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APPENDIX A

SYNOPSIS OF MATHEMATICAL TECHNIQUES

1. INTRODUCTION

The application of recursive minimum variance data smoothing to orbital
navigation and the use of adjoint techniques in powered trajectory control
analysis have received considerable attention in recent literature. A great
deal of insight into these topics has been provided in a number of excellent
articles, but due to space limitations which are unavoidable in published
literature, interesting and explanatory details are omitted from the text. As
a result many readers who are unfamiliar with the subject must accumulate
information slowly from several sources using different nomenclature and
notation._l_/

The purpose of this presentation is to consolidate the information pertinent
to this seemingly complex area of analysis and to organize the concepts for
application to space navigation and guidance as defined below. It will be
emphasized at the outset that no originality is claimed in any of the derivations
or interpretations which have been included; the entire presentation consists
of restatements of other authors' works. In addition, the accompanying
bibliography does not constitute a complete survey of applicable literature; it
is felt, however, that any reader who follows the articles referenced herein
will naturally be led to further developments in his particular area of interest.

For the purposes of this study the functions under consideration for
analysis are defined as follows:

Navigation - The estimation of position and velocity from observations
which contain unknown random errors

1/

=" Although the matrix relations needed for this development are discussed in
some detail herein, a basic acceptance of vector and matrix algebra is
necessary as well as a fundamental understanding of orbital motion and
probability.



Guidance - The determination, based upon navigation results, of the
maneuvers necessary to bring an orbiting vehicle to its desired destina-
tion

The theory of guidance and navigation is presented here as a detailed
study of the interrelations between various types of error which tend to de-
grade the performance:

Deviation of space vehicle from a known reference trajectory
Uncertainty in the position and velocity of the vehicle
Navigation measurement errors

Maneuvering errors

These latter two items, which can be considered as the ultimate sourcesof
error, are reasonably characterized by Gaussian statistics. To enhance the
evaluation of these errors, the development leads to a linear mathematical
model of the actual dynamic system. Although admittedly this step is taken
in order to capitalize upon existing analytical techniques, it should be kept in
mind that successful applications of the linearization theory have been made.

The presentation is kept as brief as the depth of the subject matter will
allow. For the sake of brevity, certain restrictions are placed upon the
scope:

The effects of bias errors upon minimum variance orbital navigation
have not been taken into account, and only '"'scalar'' navigation measure-
ments are considered; i.e., it is assumed that only one observable can
be measured at a particular instant of time. (These restrictions do not
apply to the powered trajectory analysis).

Supporting mathematical theorems of secondary importance are simply
stated and referenced without rigorous proof.

No detailed discussion of the origin of the differential equations of
motion was felt necessary; it is sufficient to note that the acceleration
vector of a vehicle can be described by simple Newtonian mechanics.
Similarly, the equations relating navigation measurements to vehicle
geometry are treated in general form.

Although these restrictions render this presentation somewhat less self-
sufficient, they enhance the overall coherence for expository purposes. The
analytical extensions suggested by these restrictions can be found in the
applicable literature.

A-2




2. CHARACTERIZATION OF TRAJECTORIES

A central feature in the implementation of the guidance and navigation
functions is the selection of terms used to define the vehicle flight path. In
this subsection trajectory characterization is described as a choice between
various transformations of the equations of motion and the constants of
integration pertinent to each form of the equations.

The equations of motion for a space vehicle in their most basic form
express the effects of forces (e.g., gravitation, thrust) upon accelerations
in space. It follows that the motion of the vehicle can be expressed as a
second-order vector differential equation. In the most general case the
vectors are three-dimensional, a forcing function is present, and the equa-
tions are nonlinear.

As a special case of this general condition, an example of a three-

dimensional vector differential equation without a forcing function is the
expression for a Keplerian orbit in a fixed rectangular coordinate system:

2

d‘%*‘? R =0 (1)
dt r

where (R) is a cartesian vector of length (r) between the instantaneous vehicle
position and the center of gravitation and (u) is the gravitational constant of the
central force field. For any complete set of initial conditions

R_ . V. .7
F 01 dB 01

5o =R (to) - ROZ ; Ko Tt (to) - VOZ (@)
hR03J _V03_J

there exists a unique orbit which satisfies equation 1. There are, however,
alternative ways of defining a unique orbit. As a first example, the vector
differential equation might be rewritten in another coordinate system to
facilitate integration. In fact, the transformation of equations of motion into
generalized coordinates and the determination of the corresponding constants
of integration is a science in itself. Examples of alternative parameters
which could be used to define an orbit are

Two position vectors separated by a fixed time interval or eccentric
anomaly

The semimajor axis, eccentricity, inclination, longitude of the ascending
node, argument of the perigee, and mean anomaly at epoch time



Various nonsingular (Ref,1l) combinations of these basic orbital ele-
ments

To explain this last example, it is noted that the perigee is undefined for
a circular orbit and the ascending node is undefined for an equatorial orbit.
In spite of these singularities, it is possible to use combinations of the basic

elements to define meaningful orbit equations that are applicable to all con-
ditions.

Selection of orbit-defining parameters fixes the type of computations
needed for characterization of vehicle motion; the prescribed navigation
calculations are slanted toward the determination of these parameters, which
in turn are used to compute the vehicle position and velocity at a specified time
of interest. Significantly, a nonsingular solution to equation 1 is expressible
(Ref 2) in terms >f the cartesian position and velocity vector components
(Rkj and ij respectively) at a given epoch time (tk):

R _. (R R R A% v

R, (e ) mi xRz’ Res’ Vi Vi Vit tmo %

Vmi <Rkl’ RkZ’ Rk3’ Vkl’ VkZ’ v

Vo) W3t - HM =L 2,3 (4)

where the vectors

[R_ .7 (v
ml ml
(5)
B—m =R (tm) - RmZ ’ \Lm =V (tm) - VmZ
_Rm3_ _Vm3 ]

represent the solution of equation 1 at time (t_ ). Immediately this suggests
the possibility of using the position and velocity vector components them-
selves as the trajectory parameters. This procedure provides direct dynamic
transformations and facilitates the estimation updating process. Immediately
after a measurement or a velocity impulse, the updated (and, in the case of a

measurement, improved) observed position and velocity vectors can replace
the previous estimate.

Ref. 1 Cohen C. J. and E.C. Hubbard, A Nonsingular Set of Orbit Elements,
NWL Report No. 1756.

Ref., 2 Pines S., H. Wolf, D. Woolston, and R. Squires, Goddard Minimum

Variance Orbit Determination Program, Goddard Space Flight Center
Report No. X-640-62-191.




The above approach typifies the state variable formulation of dynamic
systems. As applied to the case at hand, this formulation calls for the def-
inition of a six-dimensional state vector:

(x 71 [r ]
ml ml
X
m?2 RmZ
X R
3 3
x 8xi )8 ™ el ™ (6)
m m X \"
m4 ml
Xm5 VmZ

and the symbolic representation of the equations of motion (equations 3 and
4) are written as
; =X (X ., X ., ..., X st -t)i=1, 2, ...,6 7

X1(tm) ml( k1l k2 k6® m k) (7)
At any given time, then, the position and velocity vector components form a
set of six state variables, constituting a six-dimensional state vector which
defines a unique orbit without any singularities in the mathematical expres-
sions.

This basic approach can now be extended to nonhomogeneous systems.
When a forcing function is present, equation 1 is replaced by:

d R "
dt_2+ r—3 R=F (8)
where
F, @
F=|F,(t) (9)
F, (t)

defines a time-varying force vector in three-dimensional space.

According to a fundamental mathematical principle, any n‘Ch order, x-
dimensional matrix differential equation can be transformed into a first-order
differential equation in nx dimensions; it follows that equation 8 can be re-
written in terms of state variables as:

d . o\
E:C{Xi(t)}= Xi{xl(t)’ Xz(t). cee, X()(t)’ Fl(t), Fz(t), F3(t), 1}, 10)
i=1, 2, ..., 6



Although in general no closed-form solution exists for this expression, itis
always possible to obtain a unique numerical solution for any specific forcing
function and initial conditions.E/Suppose, for example, that the state vector
is known at some time (tm); its derivative at time (tm) can be computed from
equation 10:

%{Xi(t} - Xmi{xml’ XmZ’ B Xm6’ le’ sz’ I‘-’m3; tm} ;
t= tm (11)
i=1, 2, ..., 6
and the state vector at a short time later, dt, can be computed as:
X_ =X _+(@X jdt=t -t (12)

Combination of the last two expressions results in a recursive relation for
the state variables:

X.(t ) =X (X

. , X o, X F , F F
im+1 m+1,i ml

m2’ (13)

i=1, 2, ..., 6

It should be emphasized that this analysis is not limited to any specific
coordinate system. The relationships derived herein exist (at least in
numerical form) for any complete nonsingular set of independent state vari-
ables which can be used to define the motion.

3. PREPARATION FOR USAGE OF SYSTEM EQUATIONS

Given exact values of a set of parameters which define a unique flight path,
it is a simple matter to compute the exact value which any observable (e.g.,
instantaneous altitude, orientation of instantaneous local vertical with
reference to a known reference, doppler shift of radar return from a beacon)
will have at any point along the path. The inverse of this operation - i.e.,
determination of the flight path from actual observations (which constitutes
the navigation problem) - is not quite so simple; the major obstacles to this
task arise from the following two points:

In general, the observations are not simultaneous. The trajectory param-
eters, therefore, cannot be expressed as explicit functions of quantities
available from navigation data. Precise determination of the flight path would
require the solution of a set of simultaneous nonlinear equations, including not

2/ The discussion of numerical integration applies not only to the case in
which the forcing function is an independent variable, but also to the closed
loop situation, when the vector (F_) is an implicit time function, which
must be computed from observed lrnsta.te variables according to a pre-
scribed guidance law.
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only the relations between state and observables, but also the expressions
describing the dynamic state variations as a function of time.

A significant amount of error will in general be present in the navigation
measurements. Therefore, in order to determine the flight path accurately,
a relatively large number of navigation measurements must be taken, and the
data must be averaged in some manner to reduce the influence of measure-
ment errors.

The necessity for solving high order systems of equations which involve
various nonlinear and transcendental relationships must be avoided, at least
for practical reasons. Furthermore, the concept of an exact solution to these
equations has little meaning in an actual case because:

Inevitably, some random error will remain after all navigation measure-
ments have been processed.

There is no exact mathematical model of any existing gravitational field;
even the gravitational constants are not known exactly.

When the number of measurements exceeds the minimum required to
define a unique trajectory, the complete set of equations, taken literally,
is inconsistent.

The relationships used to transform navigation data into trajectory in-
formation, then, must be approximations based upon known geometric and
dynamic equations. An excellent opportunity for approximation is afforded by
the existence of a known reference trajectory; the physical relationships
between the observables and the flight path parameters, expressed as Taylor
series expansions about this reference, converge rapidly for neighboring
trajectories. In fact, for small deviations from the reference, the first
order term alone provides a reasonable approximation to the expression of a
physical law. With this expedient, the equations relating an observable (Y )
to the instantaneous state at time (tm) are written in terms of differential
corrections.

oY

e

I

8Y
m m

6
= X . (14)

i=1 mi



where:

o i
x
ml

XmZ

xm3

“m -m | x (15)
m4

Xm5

X
L mb6
is defined as the deviation of the six-dimensional state vector from its ref-
erence value at time (t ). It is convenient to arrange the measurement

derivatives intoa 1 x 6 Tow vector:

Y
A A m
= |h h h h ; = — 1
.I;Im [ ml m2 hm3 m4 mb5 hmé] hml aXmi (16)
so that equation 14 can be written as:
y =H x (17)

m —INn—im

The same procedure is applicable to the equations of motion; for example,
from equation 7 it follows that:

x =; axmix;i=1 2, ..., 6 (18)
mi j=1 anj kj S ’
or in matrix form:
00X
Zm” g__r-“— X, (19)
k

where the quantity in square brackets is the symbolic form of a 6 x 6 matrix
of partial derivatives, representing the transition in the state vector devi-
ations from time (tk) to (tm). For a Keplerian orbit, all elements of this
matrix are directly obtainable through differentiation of the six expression

indicated by equation 7,2 with all derivatives being evaluated on the reference
orbit.

3/ Vector solutions to the Keplerian orbit are derived in Ref. 2.




To apply the same technique to the nonhomogeneous case,equation 11 can
be approximated as:

% =[A:lx +[B]g (20)
—Im m -m m m

where the [A] and [BJ matrices are defined symbolicallyé/as:

)¢5, &

-
and
.
o0X
A -m

[Bm]= =2 (22)

L —m

In all cases of interest for this study, the thrust vector variation (im) is
determinec,l\ by the application of a guidance law to the observed state vector
deviation (xm) thus:

£ = [s ]4‘; - [s ](x - %) (23)
m m|-—m mj|—m -m
where (;{'m) is the error in the observed state. (The 3 x 6 time-varying

guidance law matrix {S, |is exemplified in Section 6 of this appendix.) Com-
bination of this expression with equation 20 yields:

2 = M) 2 [P B (24)
where:

[ P )& o] 5] =
and:

() () )

The approximations preparatory to the evolution of a data processing
scheme are now complete. Both the dynamic state variations as a function of
time and the equations relating observables to the instantaneous state have
been expressed as linear relationships with coefficients that are known (i.e.,
obtainable by numerical evaluation of solutions to the reference trajectory
in equations), The linearity of equations 17, 19, and 22 promises a

4/

— It follows from the dimensions of X and F that [Am is a 6 x 6 matrix and
[Bm] is a 6 x 3 matrix. Clearly these can be considered as known quan-
tities, since all matrix elements can be computed directly by evaluating
the derivatives of the nonlinear equations of motion at time (tyy) on the
reference trajectory.



straightforward navigation computing procedure and, as explained in the
next section, affords an extremely valuable technique for dealing with random
errors.

4. CHARACTERIZATION OF RANDOM VARIABLES

In preceding sections it has been recognized that the navigation measure-
ments contain random errors. It is readily seen that these errors will lead
to discrepancies in the observed state and consequently in the computed thrust
vector correction deemed necessary to trim the flight path. This error in
the apparent desired thrust, combined with the effects of imperfect engine
control, will in turn cause the trajectory to deviate from the intended course.
The effects of these errors, propagated through the appropriate transform-
ations, are naturally at the center of attention in this analysis. As a
starting point in illustrating these transformations it is of interest to con-
sider the influence of trajectory deviations upon the true value of an observ-
able.

From the definitions of y, %X, and H in the preceding section, equation
17 is written in the equivalent “formb
. (27)
y = hx +h2x2+ +h6x6

Assuming for the moment that the state vector deviation components are
normally distributed with zero mean; e,

p(x,) = —————exp{ } cees 6 (28)
2 20 .

and recalling that the coefficients h; are deterministic (i.e., nonrandom;
obtainable from evaluation of partial derivatives along the reference tra-
jectory), it follows from a basic statistical principle that the weighted sum of
the random variables in equation 27 must also be a normally distributed
random variable with zero mean. To complete the definition for the prob-
ability distribution of y, therefore, all that remains is to derive an expres-
sion for its variance. It is informative to approach this problem gradually,

5/

=" The time-dependence subscript (m) is tentatively omitted for clarity of
this development.

— Although this is a reasonable assumption, it is subject to justification
later in this section.




starting with the special case (to be generalized later in this subsection) in
which all of the variables x; are statistically independent; i.e. I

avfx.x | - av{x. av x}]
0. 8 {=1 [ 1}] [ { j 0, i#] (29)
1) o, 0,
1]
For the case in which all variables x. have zero mean, equation 29 reduces
to:

— A ., .
xixj=av{xixj} =0, i# ] (30)

and the square of equation 27,

6 6 6
2 _ = 2 2 P =
= . h.h x x
R T I A (31)
i#]
when averaged, does not contain any nonzero cross products:
6
2 2 2
y =Z.; h, x,
i=1 "1 "1 (32)
Since for any random variable (z):
Z —
()" 4o’
(33)
equation 30 leads to the relation:
2 6
o =2 h2 o 2
. i .
y i=1 1 (34)
It follows that the probability density function for (y) is:
2
1 -y
p(Y)—\/ . exp |7 > 55)
2 35
272 hic ¢z hyoy
. 11 i=1

7/

—' Equation 29 is actually a condition of pairwise linear independence only.
For Gaussian random variables, however, this automatically assures
complete statistical independence.
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This equation can also be derived in a more general form from the joint prob-
ability density function

2
6 X
1 1 i
- R R
P (x), %, ;%) ; 6 exp 2 o, 52 (36)
2m” I (o) te i
i=1

which follows directly from equation 28 and the multiplicative law for joint
probabilities of independent random variables. For this purpose it is con-
venient to define a covariance matrix for the vector (f)’ in which the i, j,
element is the mean product (-}?1.’_XJ)

- -

2
X, X, %, - % |x6
X, X 2 I
N = cov{x x\8 av XXT = | N I (37)_
x x}8 av{xx | . |
I N\ |
| AN |
I AN |
N
_x6 i e x: ]
For the particular case being considered, [NJ is a diagonal matrix with the
(i, i) element equal to the variance 0.2 . In this case it is obvious that
equation 36 can be written as: 1
1 1 T -1
p (x) = 3 172 ©XP {- 5 ¥ N 5} (38)
zn” [ [v]]

where | [N]| and (N-l) represent the determinant and the inverse of N re-
spectively. The advantage of writing the function in this form is that
equation 38 is not restricted to special conditions of zero mean and indepen-
dence between pairs xj, Xj. To illustrate the utility of the covariance matrix
formulation, it is noted that the statistical properties of y can be determined

8 . .

—/ The superscript (T) is used to denote the transpose of vectors and
matrices. It should be noted that, when a column vector is postmultiplied
by its transpose, the resulting square matrix is symmetric.
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from the state variable deviations in a single step, merely from linear
transformation (equation 17) and the definition of a covariance matrile:

freov{n 3 v ey @ awHxx B} (59

Since H is deterministic, it can be taken out of the averaging operation:

v :Hav{xx yH' (40)

As a further example of linear statistical transformations through the
covariance matrix, it follows from equation 19 that:

T T
Nmé cov {i{-m’ Em} = av {@(tm, tk) XX @ (tm’ tk)} (41)

where [qy (tm, tk)] is defined as the state transition matrix symbolized in

equation 19. Again, since this is a deterministic matrix, equation 41 becomes:
N =®(t t )N CPT (t t ) (42)
m m’ k' "k m’ 'k

The 6 x 6 covariance matrix can be envisioned as a partioned array of four
3 x 3 matrices:

(1) (2)

N N

N =

(3) (4) (43)

N N

in which the submatrices [N(l)] and [N(4)]are the position and velocity

error covariance matrices respectively. It should be noted that the diagonal
elements of these submatrices are defined as mean squared components of
error. For an orthogonal coordinate system, then, two significant relation-
ships become clear:

9/

— The scalar y can be thought of as a degenerate 1 x 1 vector or as a degen-
erate matrix, for which the properties of vectors and matrices still hold
true. For example,

a. The covariance '""matrix' of y is a 1 x 1 matrix with a single element
equal to the mean squared value.

b. The ''transpose' of y is equal to the product of the transposes of H and
x, multiplied in reverse order.
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The trace - i.e., the sum of the diagonal terms - of [N(l)] is the total

mean squared position error.

The trace of [N(4)] is the total mean squared velocity error.

Another important property of the trace arises in regard to coordinate
- rotations. Physically, the total mean squared error is obviously independent
of the coordinate system used to define that error. Mathematically, the trace
of a matrix is invariant under a similarity transformation (Ref. 3),

Assume that it is desirable to express the position error in a new co-

ordinate system by means of a rotation matrix [_W ] :
(aR), = (W] (sR), (44)
The statistics of the error, expressed in the new coordinates, become

COV{(AB)k’ (A_];_{)k} =W cov { (ég)k, (6B)k} wT =W [Nk(l)] wT (45)

Equation 43 defines a similarity transformatiorﬂﬁ/. As applied to guidance
and navigation, it is often used to reexpress the position or velocity errors
at some point in terms of horizontal, vertical, and transverse components.

As another illustration of error coordinate transformations, it is instruc-
tive to consider the principal axes of error. To elaborate on this point, con-
sider the possibility that a unit vector U exists such that, for an n x n sym-

metric error matrix [P] , the matrix transformation leaves the direction of

the vector unchanged; i. e.:

[F) u=ru (46)

Ref. 3
© Goldstein, Classical Mechanics, London: Addison-Wesley 1950, p. 105

10
——-/As defined in Ref. 3, the similarity transformation is made through pre-

multiplication by the transformation matrix and postmultiplication by its

inverse. Since, however, [W] is a rotation matrix, its transpose and its
inverse are identical.




where (1) is a real scalar. Actually, for any n x n symmetric matrix, there
are n orthogonal vectors which conform to this equation. To illustrate the
existence of a set of '"eigenvalues," )\i, and corresponding ''eigenvectors, "

Hi’ equation 46 is written for a 3 x 3 P-matrix as:

ﬂ r—
(P11 -2 P, Py3 ;]
P21 Paa "X Py Uy | & i=123
-\, u,.
L P31 P32 P33 "] | Y31 (47)

X .th .th |
where (u.i) is the j component of the i~ eigenvector.

The above expression will hold when the determinant of the matrix on the
left vanishes. This condition leads to a cubic equation in )‘i; the three roots

of this cubic are the eigenvalues. 11/

The vectors Hi can be interpreted geometrically as a set of principal axes

for an ellipsoid. Their directions are found as follows: In equation 47 replace

uli’ uZi’ and u3i by x, y, and z respectively, and from the nine scalar equa-

tions implied by equation 47, select the following three:

_ - 48
(Pyp - M) x + P,y *Py3 0 (48)
- =0
Po1 ¥ TPy, ~ M)y tp, (49)
N =0
Py * LAV R t(py3 - A) 2 (50)

Each of these equations represents a plane. The intersection of each pair of
planes will be a straight line in the direction of an eigenvector. The three
eigenvectors will be mutually orthogonal.

11/

In ref. 3 it is shown that all eigenvalues of any hermitian matrix (and
therefore of any symmetric matrix) are real, and the eigenvectors form
an orthogonal set. It sometimes happens that the cubic eigenvalue equa-
tion has multiple roots; the solution for the eigenvector set is not unique
in this case. The fact remains, however, that it is always possible to
find a real orthogonal set of eigenvectors and a corresponding set of
real eigenvalues satisfying equation 46,



As applied to the navigation problem, the significance of the principal
axis transformation lies in the insight it provides into the state vector un-

certainties. For example, suppose that the uncertainty covariance matrix
at time t

p &
= {_k k} (51)

is extrapolated by the familiar linear transformation to an intended measure-
ment time (tm):

T

Pm =d (tm, tk) qu> (tm, tk) (52)

and this extrapolated matrix is partitioned into four 3 x 3 submatrices:

(1) (2)

P P
P = m m |
m |
p (3) p 4 (53)
m m

As an example of the utility of the principal axis transformation, consider the
case in which the largest eigenvalue of [:P (1) ]happens to correspond with
the instantaneous vertical direction of an orbiting vehicle at time t this
would indicate that an altitude measurement would be particularly helpful.
More generally, the eigenvectors of [Prn(l)] and [PrnH);]could be used to

select the position-sensitive and velocity-dependent measurements respec-

tively, which contain the most significant information at any given measure-
ment time.

It is now clear that the linearized models of trajectory dynamics and
measurement geometry have provided powerful tools for analyzing trans-
formations of statistical variables. The merits of linearization are further
illustrated in the following subsections, in which the navigation and guidance
techniques are expressed in terms of straightforward linear transformations.
Since, therefore, all transformations of the random errors encountered
in the entire analy;i_s can be linearized, and since the ultimate sources of
error (i. e., measurement and thrust errors)are Gaussian with zero mean, E/
12/ . : I
— Actually, this comment applies only for an ensemble of missions, for

which the average bias errors must vanish. The effects of bias errors
upon orbital navigation, as previously explained, are out of the scope of
this presentation. Bias effects in powered flight are discussed in Section 6.
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it follows that the state variable deviation X i and uncertainty ?{mi errors at
any time tm are similarly characterized, and their statistics are completely

defined by the covariance matrices [Nm] and [Pm] respectively.

Thus far orbital (unpowered) and powered flight have been treated simul-
taneously in this presentation and certain characteristics applicable to both
trajectory types have been explored to prepare a suitable mathematical rep-
resentation for analysis. From this point on powered and unpowered flight
are analyzed separately because of differences in methods of applying the
analytical model. In the sections to follow, mathematical techniques are
described which illustrate:

® Transformation of navigation measurement data into accurate
trajectory estimates

® Transformation of observed trajectory deviations into guidance
commands

® Corruption of these processes by navigation and guidance errors

® Effects of navigation and guidance transformations upon error
statistics

For both orbital and powered flight, then, the techniques to be explained
will serve to describe both the physical system and an analytical method of
evaluating its performance.

5. APPLICATION OF ANALYTICAL MODEL TO ORBITAL FLIGHT

As applied to flight paths which are essentially free-fall trajectories (with
the possible exception of an occasional impulsive velocity change), the fore-
going problem formulation leads readily to useful techniques for orbital
navigation and guidance. The development of these techniques and the per-
formance analysis of systems utilizing the techniques are treated in this sub-
section.

To demonstrate the task to be performed in processing the navigation
measurements as a preparation for orbital guidance, it is convenient to
postulate the flight of a space vehicle in a given gravitational field:

At time tA an attempt is made to inject a vehicle by a velocity impulse 13/
into a free fall trajectory nominally characterized by a given initial state ﬁo

13/ The subscripts A and o are used to distinguish between conditions before
and after the impulse respectively.



However, because of departures from the nominal initial position (which of
course cannot be corrected by a velocity impulse) and because of uncertain-
ties in the actual initial state, combined with thrusting errors, the actual
vehicle trajectory will not coincide with either the originally prescribed
nominal orbit or the orbit defined by the estimated state immediately after
injection. To provide compensation for these errors, a plan is devised
whereby an impulsive thrust correction will be determined for application
at a prescribed time of orbital correction, tE. Determination of the thrust

command is to be based upon the estimated state at time tE, computed from

the observed orbit after all navigation data have been processed.

5.1 Navigation Data Processing by Least Squares

One possible scheme for processing the measured data is the least squares
method, which is conveniently illustrated by the following example.

Suppose that a large number M of measurements is prescribed and, in
addition to the nominal value Y of the observable at each measurement time
tm, the matrices [ __I-_i_m:l and[cp (tm, to)] defined in equations 17 and 19 re-

spectively are computed from the nominal orbit. It is convenient to combine
equations 17 and 19 into the expression

Ym ~ gm Eo
where the row vector[ -C-:-m] is the product (54)
- (55)
9rn Em q)(tm' to)

With all M measurements taken into account, there are M simultaneous
linear equations which can be combined into the matrix relation

y = C x (56)

-0

where [C] is a (M x 6) matrix with the mth row defined by equation 55 and
y is an M x 1 vector of deviations from nominal measurement values.

If only six measurements were taken, the initial state vector deviation
could be computed from these measurements merely by inverting equation 56.
Obviously, however, this is inferior to a scheme whereby a larger number of
measurements is taken in the same total time duration and the results are

averaged. In this case the matrix [C] is not square and before inversion




can take place the basic equation must be multiplied by the transpose of

[c]:
(<] Ty [CT c] x (57)

The matrix product [CTC] is always square, and

A T -1 . TA

Here, in writing the observed state vector deviations as an explicit function
of known quantities, the circumflex is used to illustrate the degradation
caused by measurement errors. The true value of an observable (Ym') can-

not be measured without the inclusion of an error (g rn):

N !

ym:Ym_Ym+am=Ym+am (59)

Theoretically, with a sufficient number of measurements, the effects of
these errors will be minimized due to averaging. Thus it would appear that
a simple and accurate solution has been found for the initial state and there-
fore for the entire orbit. This method, however, is subject to difficulties
in extrapolation over extended time durations and furthermore is critically
dependent upon two conditions:

The vehicle must be sufficiently close to its reference state so that
equations 17 and 19 are accurate.

It must be possible to obtain an accurate inversion.

Unfortunately, satisfaction of the first requirement does not at all
guarantee the second; equation 58 is subject to errors incurred in matrix
inversion. The matrix [C C] approaches singularity (i.e., its deter-
minant approaches zero) as the total time encompassing the measurements

increases. (Ref. 2)

To circumvent the difficulties present in the least squares process, mod-
ifications of the basic technique have been developed. It has been shown (Ref.4)

Ref. 4
© Magness, T.A. and J.B. McGuire, Comparison of Lieast Squares and

Minimum Variance Estimates of Regression ParameterssAnn. Math.
Stat., Vol 33, June 1962, P. 462 A-24




that at best the weighted least squares method is equivalent to the minimum
variance (also referred to as the Markov and as the maximum likelihood)
technique. For linear systems the minimum variance method is optimum
from a statistical standpoint. As its name implies, it minimizes the rms
error in the estimated position and velocity. This technique will now be
described.

5.2 Navigation Data Processing by Minimum Variance

In a paper by R. E. Kalman, (Ref. 5) the minimum variance formulation
has been derived in recursive form. As applied to the navigation problem at
hand, this technique provides a completely updated estimate of the vehicle
state after each measurement. This is done by extrapolating the most re-

cent ﬁ/ estimate, _}A_c_m 1’ to determine the predicted state vector deviation
- th
im( ) immediately before the (m ) measurement
(-) A
- 0
Em d (tm’ tm-l) Em-1 (60)

and correcting this estimate by means of a linear transformation of the new
data point:

e e, [ n)] e

m m
where[yln(_):lis the predicted measurement deviation

(-)

(-)
y m

m

>

H X

(62)

m

The weighting vector Km, to be derived in this section, can be regarded

as an error distributor which attributes the measurement deviation to each

possible cause in accordance with the a priori sensitivity of the measurement

14 . A .

—/ For the first measurement the vector Em 1= 2{_0 is the observed de-
viation from nominal state immediately after the impulsive injection.
For subsequent measurements the vector x is the observed de-

viation from nominal state immediately after the last measurement.

Ref. 5 Kalman, R.E., A New Approach to Linear Filtering and Prediction
Problems, Trans. ASME, Series D., Jour. Basic Engr., Vol 82,
No. 1, March 1960, pp. 35-45.




'

to that cause and the theoretical capability of the weighted state vector cor-
rection to reduce the rms uncertainty in the estimate. This distribution is
achieved by combining the effects of the measurement sensitivities with the
statistical behavior of the measurement errors and of the state vector un-
certainties in the determination of the optimum weighting coefficients. All
that is required for this purposeisaknowledge E_/ of the measurement error
variance (which may in general vary from one measurement to the next) and

of the initial state vector uncertainty covariance matrix [Po] . The ensuing
derivation, then, will include a procedure for updating the P-matrix as well

as an expression for K

The derivation of the optimum weighting vector (Ref. 8) begins with a com-
bination of equations 17, 59, 61, and 62:

A o=x OV ik = [x -x (')] +K_a (63)
—m -—m -m —m [—m —m —m m

From the definition of Em

X Ax -k (64)

~=" Actually, as demonstrated in Ref. 6, an approximation to the true meas-
urement error statistics will suffice. Also, the adoption of a pessimistic
diagonal initial uncertainty covariance matrix will provide a conservative
result. Since final errors are reasonably insensitive to initial errors
(Ref. 7) the results will not be too pessimistic,

Ref. 6 . L .

Gunckel, T.L., Orbit Determination Using Kalman's Method, Journal
of the Institute of Navigation, Vol. 10 No. 3, Autumn, 1963.

Ref. 7 . . . .
McLean, J.D., S.F. Schmidt, and L. A. McGee Optimal Filtering
and Linear Prediction Applied to Midcourse Navigation System for the
Circumlunar Mission, NASA TN D-1208, 1961.

Ret. 8 Battlin, R. H., A Statistical Optimizing Navigation Procedure for Space

Flight, ASRJ, Vol. 32, No. 11, Nov. 1962, pp. 1681-1696.




it follows that the error in the updated estimate is:

~ (-) 16/
Em~ [166 ) 5m Em] [ Zm " ZEm ] - 5m ¢ m (65)
which could be written in terms of a prediction error [2{_ (-)] as:
% =[1 -K_ H ];1 ) _k « (66)
=m 66 —m-—m] =m —m - m

It is permissible to postmultiply each side of this equation by its transpose
and take the expected value. This leads to equation 67 in which, on the right

] vanish: _ll/

side, the cross products involving (q m) and [%m(-)

av{Z 5, = [t - KB ] {2 0[5, D)

(67)
1 —HTKT]+K Q K T
66 —m =—m —m m=—m
where
2
Q. 4av{e "} (68)
If
(-) > rz (-1 T
P "Bav{x [x "} (69)
equation 67 can be written as:
- (-) T T T
1:)m h [166 ) ﬁm -Iim] Pm [166 ) —Iim £<-m ] ¥ 5m Qm Em (70)

It will now be explained that to optimize the weighting vector, a value must be

found for [Em] which will minimize the trace of [Pm] . Consider a

16/

——" The notation [Ijj] is used to denote a jth order identity matrix con-

sisting of 1's in the principal diagonal and zeroes elsewhere.

17/

— The prediction prior to the measurement is obviously independent of
am and, as previously explained, all random variables in this analysis

have zero mean.




partitioned form of the above expression in which all (6 x 6) matrices are re-
written in terms of (3 x 3) partitions; e.g.:

p (1 p 2
Pnl = (71)
[Fm] (3) b (4

| m m

1 o
[166] _ |33 33 (72)1§/

o) I

| 733 33

and the (6 x 1) vectors are partitioned as

K

(K] = _m(z) BEMEIER S (73)
K
——1m

With equation 70 written in partitioned form it is readily seen that [Pm(l)l

(4)
m

is independent of [ﬁrn(Z)] and that [P ] is independent of [_I_{_m(l)]. It

follows that when [K ] is selected to minimize the trace of the 6 x 6

P-matrix, it is automatically ensured that the individual traces of the
position uncertainty and the velocity uncertainty covariance matrices are
minimized separately.

The trace of the covariance matrix is minimized by means of the vari-
ational technique, a vectorial counterpart to the familiar minimum-maximum
problem of elementary differential calculus. To apply this technique to

equation 70, the vector[K ] is replaced by [-Igm + SEm] , and the first

order residual covariance[{s Pm] is found by subtracting the result from

equation 70, neglecting all terms of second order in §. It can readily be
verified that the result is:

18 . .
__./ The notation [Oij] is used to denote a (ixj) matrix in which all elements

are zZero.
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[6Pm] - 6-Iim-}—{m Pm(-) [166 -8 K

(-) T T
+[ I66 5m Em] Pm Hm 5 Em (74)
6K Q K T-K_ Q gk T

—m m=—m ~m m =m

It will be noted that each pair of consecutive terms on the right of this
expression is a transpose pair; i.e., since:

o () = [P (-)J T (75)
m m

for any symmetric matrix, then

il

5K _H__ Pm(’) [1 -H TKmT] ={[166 "5m§m]

—m — 66 m - . (76)
p (g T 8K T}
m - m - m
and
T
T T
K Q K =[K Q  sK ] (77)
—m m-—m -—m m =—1m
From the definition of a trace, it follows that the trace of a matrix is
equal to that of its transpose, and from equation 74
trace{ﬁP }: 2 - trace{ I, -K H P (-)H TaK T
m 66 —m-=-m| m —Zm —=m
(78)
-K Q 6K T
—-—m m —m

In order that the trace of [Pm] be a minimum, the following conditions

must hold: the total residual error must vanish for an arbitrary nonzero
variation in the weighting vector, or

trace{apm}=o;5§m P (79)
From equation 78 then:

(-) T
[166-§m m]pm H "B 0 (80)

—m —m m =—6l

o




or

K =P HT[H p )y
- m

-1
H P H_ +Qm] (81)

It is now convenient to write equation 70 as:

- - T
P:[I -k _H_]p ip Oy Ty
m 66 —m-—m| m m —m =—m
(82)
+K [H p gy T+Q]KT
—m|—-m m ~—m m| —m
Combination of the last two expressions yields:
(-)
= - 83
pm [166 5m-—I_-Im]Pm (83)

This completes Battin's derivation (Ref. 8); the minimum variance data
processing scheme is defined by equations 61, 81, and 83. The merits of
this technique are:

The acquisition of an optimum updated state vector estimate after each
measurement is obviously preferable to waiting for the accumulation of
several data points.

The recursive nature of the computations implies a lenient storage
capacity requirement for the minimum variance computer.

The type of computations necessary for data processing is simple (e.g.,

9/

o . 1
no large matrix inversions are necessary),—=

The continuous updating procedure affords an opportunity to minimize the
error due to linearization by computing all partial derivative matrix ele-
ments from the updated estimate.

This last point was advocated early (Ref. 2, 9) in the development of
minimum variance orbital navigation. To implement this procedure, the

197

The order of the inversion indicated in equation 81 is equal to the number
of simultaneous measurements, whereas with weighted least squares the
order of the required inversion is equal to the total number of navigation
measurements.

Ref. 9 . . . .

Smith, G.L., S.F. Schmidt and L.A. McGee, Application of
Statistical Filter Theory to the Optimal Estimation of Position and
Velocity on Board a Circumlunar Vehicle, NASA TR R-135, 1962.
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extrapolation of equation 60 is replaced by equation 7 with the components of
The state
_1)] for

extrapolating the P-matrix, and the predicted state vector z(m(') is used to

the estimated state vector X 1 used to predict the state X

(-)
m
is also used to compute the transition matrix [q;(t , t

m

vector X

compute both the predicted measurement Ym(_) and its partial derivatives
H . The weighting vector is computed as usual from equation 81, and
—m
equation 61 is replaced by:
AT (=) A (-)
X =X +K (Y -Y ) (84)
~—m —m —m m m
A

where (Ym) is the measured value of the observable. Thus as the estimate

converges toward the actual orbit, the linearized analytical model also gains
in accuracy.

From the general nature of the foregoing analysis it can be concluded that
the recursive minimum variance navigation scheme is as versatile as it is
powerful. It is not surprising, therefore, that a variety of successful applica-
tions have been reported in the literature.

5.3 End Point Guidance With a Fixed Arrival Time (Ref., 7)

Given an observed or predicted position at a specified time and a desired
position at some later time, there are several methods of guiding the flight
to the intended destination. A thorough analysis, or even a thorough discus-
sion, of available techniques is out of the scope of this presentation. How-
ever, to provide a concrete example of linearization theory applied to
guidance, the implementation of one possible approach and the corresponding
tools for analysis will be described.

The fixed time-of-arrival (FTOA) end-point guidance law specifies that at

i time (t
a given time ( A)
to counteract the apparent deviations from a particular desired trajectory in
order to reestablish the reference position at a specified future time tE. For

0
of thrust, an impulsive velocity vector incrementz—-/ (fA) is

an observed deviation of %A immediately before the impulsive injection at time

tA, equation 19 gives the resulting uncorrected deviation at time tE:
(U) _ A
xp =Dl t) X, (85)
7

The velocity impulse may be purely corrective or, more generally, may
be an adjustment to @ preplanned injection command.




which can be written symbolically as

(R (D) (6 M o @] [ A

@ ®
—E E E SBA
- (86)
U | |e B ¢ 4 A
LGKE ) E E J 61[A.-J

The apparent future position deviation at time tE can be brought to zero by

means of a corrective impulse £ = such that

A
(00 (e Mo @] [ A7
Q31 o P 8R A
- A (87)
(3) (4)
5 Yg] (P2 ®E _SYA”—AJ

It is readily seen that the predicted end point position error can be brought to
zero by a correction to the nominal injection command:

A
La=[e)z, (88)
where the 3 x 6 guidance law matrix is defined in partitioned form as:
_ (2),-1® (1)
[G] T [@E ) E I33] (89)

This completes the illustration of the FTOA end-point guidance technique,
in which the observed state is used to determine a corrective impulse. All
that remains is a description of the corresponding statistical transformations
of state vector deviations arising from navigation and thrust control errors:

The actual deviation immediately after thrust is:

O
x =x 4+ | A c (90)
~o =A G x - A
—A
where ¢ , is a 6 x 1 vector composed of the vehicle state error introduced by

A
imperfect engine control. Since the position component of this error is zero
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for an impulsive thrust, the covariance matrix of engine error can be written
in the form:

cov {c c } = 033 033 (91)
—ATA O35 [‘(eng)
Using the definitions:
~ A A 92)
Ea2Xp %4 (

and introducing a 6 x 6 guidance matrix to facilitate further manipulations,

o 8|2 =

equation 90 can be written as:
= + - X -
o [GA 166] Za [GA] ZATZaA (94)
Multiplying each side of this equation by its transpose and taking averages,
T ~ T
Ny =[Gy + o] N, [Ga * o] -[Ga + 1] cov{iA,__A}GA
G, cov{x . % [c,+1,]T+G, P, G,T (95)
T A {—A’—A}[A 665] A A A
+ cov{s A E—A}

Since—

~ A "~ ~
COV{.’EA’ -}EA} = cov{(§A+_}_{_A), EA}= 033 + PA (96)

equation 95 can be rearranged as:

NO=[GA+166] [NA- PA][GA+166]T+PA+COV{_C_:_A, f‘-A} (97)

21/

. . . . . A .
As explained in Ref. 7, the minimum variance estlmate[ X ] at any time
is uncorrelated with the error [?’c] in that estimate.
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which is the final expression for the state vector deviation covariance matrix
after an impulsive thrust command.

6. APPLICATION OF LINEARIZED ANALYSIS TO POWERED FLIGHT

In the following two subsections a powerful technique for use in linearized
analyses of systems described by nonlinear differential equations is applied
to two problems pertaining to powered flight: guidance logic determination
and error analysis. The key to the technique is the introduction of a set of
differential equations, termed the adjoint differential equations, which are
related to the homogeneous portion of the linearized differential equations
describing the system. Manipulation of the combined sets of equations can be
made to yield valuable information applicable to both guidance law determina-
tion and evaluation of the effects of random and nonrandom errors on system
performance.

It should be noted that the problems discussed herein can be solved by
straightforward operations involving only the original set of differential
equations. The advantage of introducing the set of adjoint equations lies
primarily in the greater ease and speed with which the desired information
can be obtained.

6.1 Application of Adjoint Analysis to Guidance Law Determination

The first problem discussed is to determine a set of guidance equations
which can be used during powered flight. These equations are used to compute
acceleration commands which will move the vehicle-to the desired terminal
position even though it is initially displaced from the desired trajectory.

The solution proceeds in two steps. First, the terminal errors which
would result if no correction were made to the reference acceleration pro-
gram are estimated. (These errors are the result of the fact that the vehicle
is not on the reference trajectory.) Then deviations from the reference
accelerations are postulated which are constant over the remaining time of
flight, and the magnitudes of these deviations required to compensate for
selected components of the estimated terminal error are computed. (All
terminal state errors cannot be removed because there are in general only
half as many independent control quantities as there are state variables.)

The starting point for this investigation is the set of linearized differential
equations describing vehicle motion which have been introduced previously
(equation 20):

x=[a] x+ [B] £ , (98)



(Here the subscript m has been dropped, but all quantities remain continuous
functions of time.) Recall that z'c_, X, and { are vectors composed of devia-
tions from the reference state and force vectors respectively, while [A] and
[BJ are matrices of partial derivatives evaluated using reference values of
X and F. Throughout this discussion, X and x are considered to be 6 x 1
?olumn_vectors, and _f_ is considered to be a 3 x 1 column vector.

Given this information, there exists a set of linear differential equations
closely related to the homogeneous part of equation 98. These equations,
termed the adjoint differential equations, are defined below (see Ref. 10):

[ a]=-[a]"[a] (99
Matrices [ A ] and [A] are both 6 x 6 square matrices.

To make use of these additional equations, proceed in the following

manner. Premultiply equation 98 by [A]T, and equation 99 by _)ET:

(8] Tx= (A [a]x+[a)" [B] £ (100)

x'[A] =-x [a]'[A] (101)
Transpose both sides of equation 101:

[1‘\] T x = -[a] T [a] X (102)

and sum equations 100 and 102:

(Al 5+ AT x= [al' [B) £ (103)

However,

d{ (A1 Tx }

dt

[a] T &+ [a] x-

Therefore equation 108 becomes:

A]T }
d {[ X T
= = 104
g [a] [B] L (104)
Ref. 10 ) .. . . . . .
Leitmann, G., Optimization Techniques with Application to Aero-
space Systems, New York; Academic Press, 1962, P. 218
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The left-hand side of equation 104 is a perfect differential, so that the
integral of this expression with respect to time over the interval t = trn to

t = tf can be written:

[a )]  xep {a €] xe ) - (105)

gﬂ\mﬁ
—
>
—
=
s |
w
—
K]
Q.
o+

for

where tf is the end time of the reference trajectory, to is the start time of

the reference trajectory, generally set equal to zero, and tm is any time

within the indicated interval. For ease in handling, the time arguments are
indicated by subscripts as in previous sections. Thus:

[Af]Tif-[A m]T§m=t [A]T[B]f_dt (106)

m

Before the set of adjoint differential equations (expression 99) can be
solved specifically, additional information, usually in the form of initial
conditions on the matrix [A] , is required. In this analysis, however,
specification of the elements of [A f] (the terminal conditions on the matrix

[A]) is found to be more useful. To understand the reason, refer to the first
term on the left-hand side of equation 106, The components of the vector X ¢

are linearized estimates of the terminal state variable deviations caused by
state deviations existing at time tm and force vector deviations in the interval

t = t< tf. The analytical goals are to predict the uncorrected value of x
m =

(i.e., the terminal state vector deviation which would exist if f were zero),
and then to determine what constant value of f in the interval t =t < tf will

m
reduce the terminal deviations to zero. The first goal is most easily

. . T . . . . 22/ .
achieved 1f[A f] is the identity matrix [166].-— (The vector x ¢ 1s then
22/

~—— One is free to specify n arbitrary constants of integration for n first-
order linear differential equations.,
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directly available from equation 106. Substituting the selected value of

[Af]T into equation 103 yields:

x =[Am]Tx + ftf [A]T [B] fat (107)
t

Note that the second goal as stated is to determine what constant value of £
over the interval will reduce X¢ to zero. Thus the vector { that is of interest

is constant over the integration interval and can be taken out of the integrand.
This quantity is denoted_f_m since it is the value of f computed at t = trn

T °t
_}5f=[Am] §m+{{ [A][B] at}f (108)

although it would be desirable, it is not possible to find a value ofim that

will make all six elements of xf zero. This is obvious from examination of

equation 108, since to do so requires the inversion of the matrix:

[ 5]

g

t

ftf [A] [B] dt (109)

which is not square. However, if equations 108 and 109 are combined in
partitioned form, it is possible to write a third-order matrix equation from

which a value ofirn that will make any three elements of X equal to zero can

be determined. The appropriate partitioning is shown in equation 110:

( b (1)
Ef(l) =[A m]m[f\ m] (2) Eml) ) [Bm] £ 110)
) ' (2)
_f(Z) [A m] (3>[A m] (4) 2im(z B
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where

2D, k2 1, @

[A rn](1) ,[A m](Z) ,[A m](3)’[A m](4)’ [ Bnll]m and[ B '](2)

m

, and fm are 3 x 1 column vectors

are 3 x 3 square matrices.

1
Writing the expression for z:_f( ) resulting from equation 109 and setting Ef(l)

equal to zero results in the following equation, which is easily solved for_f_m

][ 2,
_ m

S A RS
m -11m
Therefore:
T
(1)
SRR L KA R
—Im m A (2) m
[* ]
£ [5m] 2 (112)

. . 1
Note that any three of the six state variables can be made to appear in ff( )

merely by rearranging the original matrix expression, equation 98.

The matrix [A] must be known as a function of time to obtain the value of
matrix[ S] as a function of time. This matrix can be evaluated by numerical
integration of equation 99. Since final rather than initial conditions are
specified on the elements of matrix [A] , the indicated integration must
¢ towardt . Recall that[A (tf)] =[A f] is

specified to be a 6 x 6 identity matrix,

proceed backwards in time from t
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All quantities required to compute elements of the matrix [Sm] at any
and all times in the interval toS t< tf are evaluated on the reference
trajectory. Hence this matrix can be precomputed and stored on board the

spacecraft, Then at any time tm in the powered phase of flight, the com-
A
manded deviations in F, denoted —fm’ are determined from the expression:

£m= [Sm] gm (113)

A
where xm is the vector of observed deviations in X at time tm. This com-

pletes the derivation of the guidance law based on adjoint analysis. This
form of guidance is seen to be a linear predictive guidance concept; that is,
the guidance law expressions (equations 113) are linear, and control is based
on predicted values of the terminal deviations.

6.2 Application of Adjoint Analysis to Sensor Error Evaluation.

This subsection illustrates the application of adjoint analysis techniques
to the problem of evaluating the effects on performance of system errors,
which were not previously considered. The measure of performance

employed is the vector of terminal state deviations, xf. The source of error

to be investigated is the vehicle navigation sensor system which determines
the estimated value of x, denoted x, upon which acceleration commands are
based. When sensor errors are present, X is not equal to x; rather:

| ¥>
]
|%2

X =

(114)

~ .
where x is the observation error vector.

To begin the analysis, return to equations 98, which are the linearized
equations of motion.

A
x=[a] x+ [B] £ (115)
A

Quantity f is the computed command force vector which is determined by
using the observed state variable deviations, %, in the guidance law which is
to be employed. In practice the actual guidanze law equations can be derived
in a variety of ways, perhaps emperically, and they can be either linear or
nonlinear. However, this discussion deals with a linearized model of the
actual vehicle guidance and control system in which the guidance law is
represented by the linear matrix equation:
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i-[s]x

=[] {=-%}

where the matrix [S] can be thought of as a matrix of partial derivatives

(116)

evaluated on the reference trajectory.

In addition, the components of the state vector used in the guidance law
(equation 116) are quite often not physical quantities which can be observed
directly on board the spacecraft. When this is the case, an additional
navigational task is to compute an estimated value of x on the basis of the
observed value of y, the vector of observables, the physical quantities which
can be measured directly. Vector y is the actual deviation of Y from the
reference value. It is assumed that during powered flight, sufficient ob-
servables are used to allow estimation of the vehicle state at any time on the
basis of observed information available at that time. The expressions used
to perform the estimation of the vehicle state from the observables, termed
navigation equations, here, are in general nonlinear geometrical relations
and are represented functionally as:

X=g(Y) (117)

In the linearized system model the navigation equations take the form

?E=[G] i (118)

where [G] is a matrix of partial derivatives, relating dev1at1ons in X to

deviations in Y evaluated on the reference trajectory, and y=y- y where ¥ y is the

vector of sensor errors. Then:

%=z-§=[G]x-[G]}Z (119)

~

Since x = [ G] y; and E = [G] y in the linearized system, equation 118 can
be written in the form:

x=x-[c] % (120)

Substituting equation 120 into 116 and the result into 115 yields:

x=[a] x-[®] 3 (121)
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[2] 2 [a]+ ][9]
(=] 2 [=] [5] [¢]

The equations adjoint to the homogeneous part of equation 121 are:

(4] =~ [+]7[a]

Following a procedure identical to that outlined in subsection 6.1 leads to the
following equation:

e R

(123)

Equation 123 is next integrated with respect to time over the entire trajectory,
since the error inputs of interest exist during the entire flight. If to is set

equal to zero, this yields:
[A f]Tif -[AO]TE():_ f [A] T [Bl] '2 dt (124)

As before, we are free to specify the value of [ A] at some time, and it is

again convenient to set [A ] equal to the identity matrix, since the terminal

f

deviation vector, x is of primary interest. This makes the terminal de-

f’
viation vector caused by initial deviations from the reference flight path,
xo, and by navigation sensor errors during flight, Y, directly available from

equation 124. In this particular analysis, which is aimed at evaluating the
effects of sensor errors, terminal errors caused by initial deviations are not
of interest, so that X is set equal to zero. It can be seen that this will not

in any way affect the determination of sensor error effects as determined by
the integral on the right-hand side of equation 121. The following expression
results from the preceding considerations:

'

x.=- [ (2] 7 [#] gat (125)

[e]




-

Two types of error are of interest: bias errors and random fluctuation
errors. Bias errors are time-invariant over the performance of any single
mission but random over the ensemble of possible missions. Random errors,
on the other hand, fluctuate randomly during the course of any given member
of the ensemble of missions. It is assumed that the random components of
sensor error tobediscussedare samples of white 23/ stationary Guassian noise
with zero mean values. To distinguish between the two types of sensor error,
y is thought of as the sum of two components, ib and in' representing

bias and random errors respectively.

Y=Ypty, (126)

Letting in equal zero leads to rapid conclusion of the analysis of bias errors.
Since ib is constant over the mission, it can be removed from the integrand

of equation 125.
tf
2 =1 - fo [A]T[B'] at} g, (127)

Xp ™ [ K| Iy (128)

where[ Kb] is a matrix of sensitivity coefficients evaluated by performing the

integration indicated in equation 127.

The analysis of random errors is more complicated, since in is a
randomly varying function of time. The function i;-n (t) cannot be known
explicitly; however, it can be described in a statistical sense. Since in has
been stated to be white noise, the mean squared value of in is not defined.
However, each of the elements of -;-n can be characterized by its power

spectral density. The spectral density of :;;qn’ defined as an is constant

23/

—' Nonwhite noise can be handled by assuming that the desired
spectral distribution is generated by passing white noise through a suit-
able linear shaping filter (Ref, 11). The shaping filter is then included
in the system described by the linearized equations of motion.

Ref. 11 Laning, J.H. and R.H. Battin, Random Processes in Automatic

Control, New York; McGraw-Hill, T956.
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over the range of frequencies - ® <f < 4+ . Also defined is the auto-
correlation function of ?qn which is denoted Rq (T) and is equal to:

R (M) =av{y (MF (+m}ia=1 2 .0 (129)

where Q is the total number of observables. In addition, random errors in
each of the observables are assumed to be independent; that is,

~

av {§,,(t) (e } = 0 (130)

for p?{ q and for any values of t1 and tz. Another method of obtaining Rq(T)

is the use of the Wiener-Khintchine relationship, which states:

o8]
f
R (T) = = f w () 2™ af (131)
q 2 e
w > W
__49n f jemtE T . gn
- e af = —2= 5 (7)

where §(T) is a Dirac delta function atT = 0.

The preceding information is useful in the further analysis of equation 125
with Yy set to zero:

b

s L[] (7] Ly s

(o]

T anti

he quantity X
statistical averages. It is clear that the average value of Xl is zero, since
the average value of Y, is zero. Of greater significance, as explained in

section 4, is the covariance matrix of xf
—fn

[Nf]ga"{ffnff;} (133)

is a random variable which can only be discribed in terms of

which is denoted [Nf] are defined:




NN NN

Substituting equations 132 into 133 yields:

te b
[N ] =2 { [ [ [Ppe] g6 70t [peey] " ar, dtz} (134)
[e] (0]
where

[p] 2 [A]T [2] (135)

The averaging process in equation 134 can be moved inside the integrand:

te

te
[Nf] N f [D(tl)] av{ ¥, zn(tz)T}[ D(tz)]T de, dt, (136)
(o} (o)

The quantity av{ zn(tl) in(tz)} is seen to be zero when tl # ’c2 and equal to

[Q (tl)] , the covariance matrix of Y when tl = tZ:

[atp] 2av{y )7 ()7} (137)

The off-diagonal terms of [ Q (tl)] are zero by equation 130, while the

diagonal elements are given by equation 129:

[am] =4 [w,] s
where
— 9
Wln 0 0
A O « o
[Wn] B : \:NZI{ ° (139)
] AN
L(') 0-nnn-v 3 -WQn_J
and
T = tl - tZ
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Thus equation 136 can be written (Ref, 11):

t
f

[Nf] =';.' f [D(tl)] [Wn] [D(tl)]Tdtl (140)
[e]

It is the diagonal terms of [Nf] that are of particular interest. They

are the mean squared values of the terminal deviations of each of the state
variables. Define:

o fr.lz as a column vector made up of the diagonal elements of [Nf] . The
- th 2, { 2 }
p element of_o_‘ f 18 equal to av (_;E p)fn .
_V!n asa column vector made up of the diagonal terms of matrix [Wn] .
(w. ]
In
wZn
w_ Al (141)
-_—n = |
|
w
Qn

Subject to these definitions, it can be shown by expanding equation 140 that,

L [Kn] W (142)

where (k) , the general element of (K _),is defined as:
Pan n

t
1 £ 2
k = — d t 14
( pq)n 2 fo { pq( 1)} at (143)
. . th
Quantity dpq(tl) is the pq element of [D (tl)] .
Matrix [Kn] is therefore a matrix of sensitivity coefficients which can

be used to estimate the mean squared terminal error components caused by
random sensor errors as characterized by the average power spectral density




|

associated with the noise input to each sensor. The value of[A (tl)] is ob-
tained by numerical integration backward in time from t = tf with [A (tf)]
specified to be the identity matrix. Matrix [B'(tl)] in equation 121 is
evaluated using the reference values of X (tl) and F (tl). Thus it can be
seen that all the information required to compute the matrix [ Kn] is avail-
able.

In conclusion, sensitivity coefficient matrices have been derived which

can be used to estimate the effects of both bias and random sensor errors
on terminal state deviations.

A-41/A-42



APPENDIX B

MIDCOURSE PHASE

In this appendix the equations for midcourse guidance are derived. The
mathematical notations used are listed below. !

x(t) 6 -component state vector whose components are AX,

AY ---AZ
F(t) 6x6 matrix used in writing linearized equations of motion
o (t, tg) 6x6 transition matrix which relates deviations at t to dev-

iations at to

Iii, oij i-by-i and i-by-j unit and null matrices respectively

fij’ ¢ij Components of F(t) and @ (t, t,) matrices

g Angle between star sightline and planet center

S Unit vector along star sightline

a, b, ¢ Components of S (star direction cosines)

X, Y, Z Spacecraft position components in earth-centered coor -
dinates

Xm, Ym, Zm Moon position components in earth-centered coordinates

H(t) Matrix relating measurement deviations to state devia-
tions

R Position vector

R Range

6 Half-subtense angle of visible disc of planet

—/ This list does not include the notation used in Sections 2 and 9, which in
many cases conflicts with the notation used in other sections.
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< ™

Vector from spacecraft to horizon

Planet radius

Angle between star direction and near horizon
Angle between star direction and far horizon
Expected value

Estimated value of x(t)

Error in estimate of x(t)

6-vector, whose three position components are zero and
whose three velocity components are the errors in meas-
uring the velocity correction

Covariance matrix of estimation errors
Covariance matrix of deviations from the nominal trajectory
Matrix relating corrected state to estimated state

Error in implementing the velocity correction (6-vector
whose three position components are zero)

Subsidiary variable in Section 4; 6x6 covariance matrix of
velocity correction errors in Section 5

3x3 covariance matrix of velocity correction error

3-vector consisting of errors in implementing velocity
corrections

Variance of errors in magnitude of applied correction
velocity

Variance of errors in percentage thrust error in velocity
corrections

Variance of errors in timing of correction thrust

Variance of errors in pointing direction of velocity cor-
rections
Magnitude error in applied correction

Gravitational constants of earth and moon

Angle from moon's ascending line of nodes to the earth-
moon line at to
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<t R

AV
T(ty)

Ty

Orbital period of moon

Inclination of lunar orbit plane to earth's equator
Weighting vector

Measurement variance

Standard deviation of reference point error on earth (k)
and moon (k)

Variance of optical instrument errors

Variance of ranging errors

Covariance matrix of velocity corrections
Upper 3x3 submatrices of ¢ (tp , tk) (Section 6)
3x6 matrix relating state deviations to correction com-
mands

RMS correction velocity

RMS position deviation from nominal

RMS velocity deviation from nominal

RMS position estimation error

RMS velocity estimation error

Total of rms correction velocities in flight
Target uncertainty at t)

RMS position uncertainty at target

RMS velocity uncertainty at target

Rotation matrix from XYZ coordinates to downrange-
crossrange-altitude coordinates

Angle measurement error

Magnitude of spacecraft velocity

Error in timing a measurement

Range from spacecraft to some surface reference point

Angle between sightline to reference point and vehicle
velocity vector

RMS measurement error due to timing, landmark, and
instrument uncertainties



g L;O' I,O'T

E(t)

W (t)

x (1)

als
3L

M(t)

e , e , €
x Yy

z
ea’ ed’ ec
M!

v
—e
B-4

RMS errors due to timing, instrument, and landmark
uncertainties

Matrix of partials of vehicle accelerations with respect
to astrodynamic constants

3-vector of astrodynamic uncertainties
Measurement vector

Noise on each measurement

State of dynamic measurement noise process
Gaussian input to noise process

Matrix relating state of noise process to measurement
noise

Matrix related to noise process
Augmented state vector, composed of x(t), e(t) and w(t)
Refers to augmented matrices and vectors in general

Matrix which relates observations to augmented state
vector

Transition matrix of noise process (Section 8)
Time constants of measurement noise
Earth~-moon distance

Errors in astrodynamic constants

Error in estimation of moon's state (in earth coordinates)

Error in estimation of vehicle state after transformation

in lunar coordinates
Unit vectors in coordinate system defined by nominal
altitude, downrange, and crossrange directions at
periselenum
Position error 3-vector at periselenum
Components of r in X, Y, Z directions

—e

Components of re in a, d, c directions

The 3 x 3 matrix required to rotate position errors
from XYZ coordinates into adc coordinates

Velocity error 3-vector at periselenum
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3 Periselenum error 6-vector composed of r. and v
—e - —e

P P matrix in adc coordinates
a

1. COMPUTATION OF TRANSITION MATRICES

In this section the computation of the transition (®) matrices is derived
These transition matrices relate state deviations at some time (t) to state
deviations at some initial time to

In paragraph 2.3.1. 2 of Volume III, the linearized equations of motion
are written in matrix form:

x(t) = F(t)x(t) (1)

where x(t) is the 6-vector of state deviations (AX, AY........AZ).

It is well known (Ref. 1) that the solution of equation 1 is given by:

() = (¢, ¢ )x(t ) (2)

where & (t, to) is the 6 x 6 matrix defined by:

do(t, to)
T = F(t)®(t, to) (3)
where
4’(to’ to) - I66
f (4)
or all t .
o

Writing equation 3 in expanded form,

— . . L™ — — —

27T T % itz - 7 e *11%127 7 7 %16
L E 21 -~ T T 7T 21 T T
S T N U N
%1 - T " fe1 = = 7 " fee Pe1 T 7T 7 %

Ref. 1l.Bellman, R, E., Introduction to Matrix Analysis, New York:
McGraw-Hill, 1960.

(5)



where
4>11(0) =1 ¢..(0) =0, i=j (6)

qbZZ(O) =]
I
I
|
I
I

4>66(0) =1

W riting out equation 5, J

¢ =i ¢ +f ¢ +----f ¢

7
11 1111 12 21 16 (7)

b= f + f + -
ta1 7 5%t 2% 26 61

b = f +f +--- £ ¢
P11t N2®i2 66 61

where®;; (0) =1 and ¢,.(0) = 0 for j#1. Simultaneous solution of equation
7 with these initial conditions will yield the quantities 4>11, 4;21 -- - ¢61'

The other five columns of the matrix ® (t, tg) can be generated in similar
fashion, except that for the second column, ¢22(O) = 1 and ¢2. (0) = 0 for
j#2 and so on. J

It should be kept in mind that the elements of the F(t) matrix (fij) are in
general time-varying, since F(t) is given by




o .
0 0 0 1 0 0 (8)
0 0 0 0o 1 o0

F(t) = |0 0 0 0 0 1

f
afl/dx C)fl/dy J 1/0z 0 0 0

f
afZ/dx af.2./0y a2/az
d

f
f3/dy J 3/0z N

, etc are evaluated along the reference trajectory.

afs /9 x
L
where the partials afl /3%
Thus, in the computer program used in this study, each column of the ®
matrices was developed by simultaneous solution of both the linearized equa-
tions 7 and the nonlinear differential equations of motion (equations 84
through 86).

2. APPLICATION OF KALMAN'S RESULTS TO SPACE NAVIGATION

In paragraph 2. 3. 1. 3 of Volume III, it was stated that equations 2-20
through 2-22 were solutions to the problem of making a minimum variance
estimate of a trajectory based on noisy observations and an initial estimate.
It was stated that these equations were Kalman's. However, since the exact
problem formulation and notation used by Kalman in Ref. 2 and that used in
this report (and Ref. 3) are different, this section presents a precise deri-
vation of equations 2-20 through 2-22 in order to bridge the notation gap.

Kalman's results are as follows. Given a dynamic model represented by
the following equations:

x(t+ 1) =P(t+ 1, t) x(t) + u(t) (9)

y(t) = M(t)x(t) (10)
where u(t) is an independent Gaussian random process of n-vectors with
zero mean, x(t) is an n-vector, X(t) is a p-vector (p<n), &(t + 1, t) and M(t)

are n x n and p x n matrices respectively whose elements are nonrandom
functions of time.

Ref.
ef. 2 Kalman, R. E., A New Approach to Linear Filtering and Prediction

Problems, Jour. of Basic Engr., March 1960, pp. 35-45,




Given observed y(ty). . .- .. y(t), find the estimate X (tl/t) of x(t1) which
minimizes the expected loss. The results derived in Ref. 2 in equations 21,
28, 29 and 30 are listed below.

e 1o =0 w1 oxe e 0+ a Ty (1)
* % % -1

afW=e(tr L 0P M (1) [MEP (M (1) ] (12)

® e+ 1, =D (t+ 1, t) - A (E)M(t) (13)

P¥t+ 1) =a *(t + 1, t)P*(t) &' (t+ 1, t)+ qlt) (14)

where q(t) = E {u(t)u' (t) }

st

Also, as Kalman shows, P" can be written
PHt+ 1) =@ (t+ 1,1) [ P¥0) - PRoM' (ma@wP oM (1) (15)

times PXOM(t) | @ '(t+ 1, + q(t)

Equations 11 through 15 are all written in Kalman's notation in which
(') is a transpose and x* indicates the optimal estimate of x. Converting

this notation to that usAed in paragraph 2.3. 1.3, of Volume “III where ( )T
denotes a transpose, X an optimal estimate, and denoting the observation

times ty, tg_ - .- etc,

A _ b3 E3

e, |t)=e (g, )x( et Pt A (v (16)
« T ; T -
! _ sk M E3

AT = et EIP M () {MIOP M (e ) } (17)

o ey W, 8 A (Ml (18)
* * * T * T -1

Pt , )=o) t) {P (t) - P(t,) M7(t,) [M(tk) P ()M (tk)] (19)

times P*(tk) M(tk) }J(tk + 1'tk) + Q(tk)

1.
Rel 3 qimith, G. L., S. F. Schmidt, and L. A. McGee, Application of
Statistical Filter Theory to Optimal Estimation of Position and Vel-
ocity on Board a Circumlunar Vehicle, NASA Ames, NASA TR R-135,
1962.
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Now, define the following:
* T T -1
=P M x|
K(t,) (t,) (tk){ M (t,) PHt )M (t) } (20)
Substituting into equations 16 through 19,

A _ * A
Xt oo BT (g, BIEE B ety ) H) Kity(t) o))

A*(tk) = (tk ‘1 tk) K(tk) (22)

)

%
o ( tk) = & (thr 1,tk) - (tk ,tk)K(tk)M(tk) (23)

bt 1, +1

* - t) |2 K(t )P (¢t )M T 24
P(tk+1)—¢’(tk+l,k[ (t) - R IP (£ M) 107, )t ) (24)

+ Q(’ck)

Now equation 23 can be substituted in equation 21, and equation 22 is no
longer necessary, so that:

A _ A
x|, 1Itk) = [4: L S LY 1,tk)K(tk)M(tk)] f(tkltk_l) (25)

+ O KLy )

% T ¢ T -1
K(tk) =P (tk)M (tk) {M(tk)P (tk)M (tk)} (26)

sk

i} * 0 % T
Pt , 1) = (tk+ 1,tk) {P (tk) K(tk)P (tk)M(tk)} o (t, 1,tk) (27)

+ Q(tk)



Rearranging equation 25,

A _ A
i{(tk+1 tk) = ¢ (tk+1, tk)l{(tk | tk-l) te (tk+1, 1:k)K(tk) [y(tk) (28)

SV L 1)]

The transition matrix & (t tk) is used to translate the optimal esti-

k+1,

mate 9; from tk to tk+1' Therefore the optimal estimate of x (tk) including

the observation at tk is given by
A A A
t )= x(t t + K(t t ) - M(t )x(t t 29
H(h |80 = 36 [ 6 ) D[ yle) - M) |y )] (29)

J= & (6 t )Xt

A
Si t |t t
mcef(kl k-1 k, k-1— k-ll k-1’

A
t)=o(t t
z(tk | k) (

A
i, Fieen? ey [ B! (30)

N
+ K(t,) [y(tk) - Mt ) @t Il l tk_l)]

Equations 26, 27 and 30 specify the recursion process. Letting
g (tk/tk) be denoted byg (tk) and writing equations 26, 27, and 30 in terms

of the '"augmented'' state notation used in paragraph 2. 3.1. 3, Volume III:

* A¥
Fe) = ® e t E (h )+ K {vie) | (31)
-M(t,) P * (. t ) Q (t
K Kk, ‘k-1 x ey
* % T * T -1
K ()= P (¢ )M (1) { Mt )P (£ IM (¢, ) } (32)




 EE EE S EEEEEEEEEEEEEN

P*(t )= & (t t ) {P*(t ) - K(t. )M(t )P*(t )} T (33)
kt 1 k+1, k K e K @ty 1)
+Q (tk+l, tk)
t
* _ prk+1 T T
Q(ﬁwlfk)‘[ @ty B E {u(mi (e T, taar (39)
k

3. DERIVATION OF RELATIONS BETWEEN STATE VARIABLES AND
OBSERVABLES

In this section the relations between the state variables X, Y..... Z and
the observables are derived for various types of measurements.

3.1 Angle Between Planet Center and Star Direction

Figure 1, illustrates the situation in which each observation consists of
the measurement of the angle § between some star direction and the center of
the earth or moon.

When the angle §to the center of the earth (ge) is measured and the

measurements are being referenced to an earth-centered inertial coordinate
system, then H, the matrix of partials of Le with respect to the state vari-
ables is developed as follows:

[age ot e, J
H= Fpe ay 32 0 00 (35)

Let R = Xi +Yj+ Zk be the position vector of the vehicle in earth co-
= U= =

ordinates and S = ai + bj + ck be the unit vector representing the star direc-
tion. - -7 -

Then
1 ~-R S -Re S
¢ = COS_ < )= cos— U (36)
e R 12] R,

B-11
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- STAR DIRECTION
[} %

S =ai+bj+ck

>‘ SPACECRAFT (X,Y,Z)

i)

I 750E-VA~122
Figure 1. Geometry of Earth-Star Measurement
{ = cos”! <—aX+ bY + cZ>: cos™! 4 (37)
e R e
e
od
e 1
- =—{5)
2
1-4d
e
B-12
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Therefore
aR + Xd
gte _ e e h
90X 2 z
R 1-4d
e e
bR + Yd
gbe _ _" e e (39)
oY 2 > >
R 1-4d
e e
cR + Zd
dte _ e e
o R . 1 -d .

e T e J
where ~
d = - aX + bY + cZ

e R
e
and ? (40)
2 2 2
Re =’\/X +Y + Z

<

Equations 39 and 40 also apply to the case of angle measurements from a
star to the moon in a lunar coordinate system, except that the quantities sub-

scripted by e in equations 39 and 40 are referred to the moon instead.

When a moon-star angle & is referenced to earth coordinates (or vice
m

versa), let

- R =(X -X)i+(Y -Y)j+(z -2Z)k (41)
—vin m - m - m -

where X , Y , and Z are the coordinates of the moon in an earth-centered
m m m

system. Then, proceeding as before, with the star direction defined by
S =ai+t+ bjt ck,



vim m
oY 2 2 )
R 1-4d
vim vim
cR +(Z2 -2 )d
atm: vin m vim
aZ > >
R 1-4d
vin vin
S
where
\
a{(X-X )+b(Y-Y )+tc(Z2-2 )
d = - m m m
vim R
vm
and

R =A/(X-X Pr(v-v Vrz-z )
vim m m m S

The case of an earth observation referred to lunar coordinates is similar,

of course, to equations 41 and 42.

3.2 Direct Range Measurements

For direct range measurements, the H matrix is given by:

[a_fs R OR o]
0X 0JY 9Z

For an earth range measurement in earth coordinates,

2 2 2
R=Re='\/x +Y + Z

dR /9X = X/R

e e

R /3Y = Y/R

e e

dR /92 = Z/R

e e
B-14
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(45)

(46)
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The results are identical in lunar coordinates.

3.3 Range Rate Measurements

For a system employing range rate as the observable, the H matrix is
given by:

H_[af{ dR 9R R &R afi]

aX oY 02 X 9Y o2 (47)
SinceR:»\/X72+Y2+Z'2 (48)
ind R L XX+ YY 422

R
X R. g
9Y YR
dR "~ g2
R _Z _ 2R
3Z ~ R ~ RZ
dR/dX = X/R (49)
OR/3Y = Y/R
dR/dZ = Z/R

3.4 Optical Ranging by Measurement of Planet Disc

By measuring the apparent size of the planet from the spacecraft, range
can be determined. In figure 2 the range is given in terms of 6, the half-
subtense angle, by

r
= sin® (50)
dR JdR IR . . :
Then H =£3X 3Y 92 00 0} and the partials are given by equation 46.
dR/OX = X/R (51)
oR/9Y = Y/R
OR/3Z = Z/R



ITSOE-VA-I123

Figure 2. Planar Geometry of Star Horizon Angle Measurement

If the observed angle 6 is used directly, then H =[ 96/3X 06/3Y 98/92

-1
00 o] and since 6 = sin_ (r/R),

06/0X =— X )
R (R2 - rz)

36/0Y =—— > (52)
R(R2 - rZ)

36/02 =—=™
R(R® - %) )

3.5 Star-Horizon Measurements

One way of measuring the angle between some star direction and a ref-
erence point on the earth or moon is to measure the elevation angle of a
star above the horizon of the planet. This type of measurement is




illustrated by t"h in figure 35. The figure shows that the star horizon angle

is equal to the difference between the angle { and the half-subtense angle
9; i. e, ,

£, =%-9 (53)

From equations 37 and 50

( - cos l[aK4DbY +c2 _sin-l_;_)
h- R R (54)

Letting H = [ag’ h/dX 19 h/dY ag’h/dZ 00 0] , the components can be

determined by differentiating equation 52:

aL 98

From equations 39, 40, and 52, the partials are derived:

0%, aR +Xd X (55)
= +
0X " 2 A-a® A/RR%-rH
where
aX + bY + cZ
d = - 56
( L ) (56)

If the angle from a star to the far horizon, rather than the near horizon
as above, is used, then equation 54 becomes

£, =5+ 3 (57)

and succeeding equations are modified accordingly.

4. EFFECT OF VELOCITY CORRECTIONS ON ESTIMATION AND DEVIA-
TION STATISTICS

It was shown in paragraph 2.3.2 of Volume III that the covariance
matrices, P, N, and V, representing the statistics of the errors in estimate,
the deviations from the nominal trajectory, and the velocity correction com-
mands respectively, are used to describe the average performance of the
midcourse guidance system. Equations 2-45, 2-27 and 2-28 of Volume III
show the computation of P and N when no corrections are made. In this
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appendix the equations which statistically describe system performance when
a correction is made are developed.

The changes in estimation errors are simplest to derive and will be
treated first. The covariance matrix of estimation errors is defined:

P=E xxT} (58)

A . . . . .
% is the estimated state deviation vector, and x is the true

Letting P be the covariance matrix of estimation errors after a correc-
c

tion has been made, then
~ o~ o~ =T
P =E{G+a) G+’ } (59)

where AV is a 6-vector whose three position components are zero, andwhose
velocity components are the errors in measuring the velocity correction.

Then
PC=E{;<>:1}+ E{A%xT}+E{xAvT}+E{AvAVT} (60)

Assuming that the errors in measuring the velocity corrections are un-
correlated with the trajectory estimation errors, then

{avi'}- p{zas’ }= o (e1)
and P_=P+[0,, 0,
0,,C

where C = E {A'\? AV } is the 3 x 3 covariance matrix of errors in measuring

the velocity correction, where AV is the 3-vector consisting of the velocity
components of Av,

The covariance matrix of deviations from the nominal trajectory is de-
fined as

(62)




After a velocity correction has been made, the vehicle's state is given by

ic--x-{-Gx+xQ ' (63)

where Gx is the commanded velocity correction, based on the estimated
state x ‘and XQ is the error in implementing the correction. After a cor-

rection the covariance matrix of trajectory deviations is given by

A A
= T
NC_E{(3<_+G§ +_’EQ) (x + Gx +5Q) } (64)
NC = E{xxT + x;\(TGT + xxT: + G)/‘\:x + GQ}?GT + Gxe :XT (65)

Q—G+—Q—Q}

In this study it was assumed that the errors in making the velocity cor-
rections were uncorrelated with the trajectory deviations so that the expected
values of crossproduct terms in equation 65 involving x . are zero. This

Q
assumption, borrowed from Ref. 4, is not necessarily true, since the vel-
ocity correction errors should depend upon the velocity correction magni-
tude which in turn depends on the trajectory deviations. At any rate, the
effect of eliminating these small crosscorrelations is small, and equation
65 is written

T
N_ =N+ E{XQTG + x4 GxxGT} +S (66)
where
S S 2 O35 O3 (67)
i o=l
33 S

where S' is the 3 x 3 covariance matrix of errors in applying the velocity
correction. (See equation 84, this section, for computation of S'.)

Ref. 4 McLean, J. D., S. F. Schmidt, and T. A. McGee, Optimal Filtering

and Linear Prediction Applied to a Midcourse Navigation System for
the Circumlunar Mission, NASA Ames, NASA TR D-1208, March
1962,
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In order to reduce equation

In Ref. 2 it is shown that if &

66, the following derivation will show that

() o) o

-—x+x(orx—x) then E

/\

Then E xQT = 0. Now, forx:

{} {mx }

Also,

@)
ut
E{:_c_%T}= Eﬁ + E)ET}

Since

E{?&T} - 0,

then

)

| %>

]

o

{x }: E x_xT - gT}= (N-P)
Similarly
Eg\c_xT :E(E-X)ET}=E£T
E xxT = E g(g +g)T} =E ;c;\{T
el -5 f‘gT =0
E §_>5T - El%xT

~

}{}

-
| %>
»
-
1l
=
o]
|%
—
[}
M
"4
N,
Z
3

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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Substituting equations 68, 73, and 78 into equation 66

N =N+ [(N - P)G' +G(N - P) + G(N - P)GT] +S (79)

C

n

N
c

(I, +G) (N - P) (I, +G) +N+S (80)

Y66
which is the form used in this study.

In order to complete the derivation of the change in the covariance matrix
N due to velocity changes, S', the covariance matrix of errors in implement-
ing the corrections must be developed. In Ref. 5, subsection 5.2, it is
shown that the covariance matrix of errors in implementing the velocity cor-
rection is as follows:

2
' .« T 2 o 2
s =E{§Qx }:c’kV+ zY [u 133-\/] (81)

2 2 : . s
where T and ¢~ are the variances of the magnitude and pointing error

. TY . . . .
respectively, V = E { Av Av } is the covariance matrix of velocity correc-

tions, and u is the trace of V.

Equation 81 lumps all sources of magnitude error together. If the ve-
locity correction scheme involves thrusting with a fixed-thrust rocket engine
for a certain period of time, however, then velocity correction magnitude
errors will be due to two sources: an error in the applied thrust magnitude
and an error in the time for which the thrust is applied. Mr. Gerald Smith
of Ames Research Center suggested a method of revising equation 81 to
account for the two possible sources of error in velocity correction magni-
tude.

Ref. 5
Battin, R. H.. A Statistical Optimizing Navigation Procedure For

Space Flight, ARSJ, Vol. 32, No. 11, Nov 1962, pp. 1681-169




. 2. . .
In equation 81, o 18 the variance of the error in velocity correction

magnitude; i.e.,

2 .2
% E{'ﬁ)‘}

Letting
AR E SR (82)

where € is some error in timing the thrust and| is an error in thrust

2ol

magnitude, then

2
of <= {lsal’} - {{farl +5)7) - (rets s
2

2
where O is the variance of the thrust magnitude errors while v is the

variance of the thrust timing errors, assuming e andIchTlare uncorrelated.

Substituting equation 82 into equation 81, we arrive at the velocity correction
error formulation used in this study.

- 2 - 2
/ 2 € Y 2
S —QTK +?—) v +—2—- <u 133 V> (83)

5. EQUATIONS USED IN COMPUTER PROGRAMS

All the equations used in the three midcourse guidance computer programs
are listed here.

5.1 Nominal Trajectory Program

This program is used to generate the nominal trajectories by numerically
integrating the following three equations:

. X m By X
R - LR AR o
R R R
e vm m
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.Y: _ |J.eY i M (Y-Y ) |J,mY

R3 R3 R3
e vm m

Z Z

L m "

7 = - e3 - r;‘ (z - Z )__m‘%_rE

R R MR

[ vim m

(85)

(86)

where Mo and, are the gravitational constants of the earth and moon and
m

X, Y, Zand X ,
m

moon in an earth-centered cartesian coordinate system. R , R
e vm

Y , Z are position coordinates of the space vehicle and
m m

are distances defined by

Rm ='\/Xri+ Y

2
+Z
)
+ z°
m m
2 2
R =\ﬁ< -X )T+ (Y- Y )

+(Z2 - Z )2
m

and R
m

(87)

(88)

(89)

The moon's revolution about the earth (assumed circular) is described by

X =R cos

Y =R sin

Z = R sin

21'r(t-t)+

_
27 (t - to) ]

T + qu

2w (t - t )
2ty

L T o

o

| — T 4’0]

cos ¢

sin ¢

(90)

(91)

(92)



where Rm is the earth-moon distance, ¢ is the inclination of lunar orbit to
the earth's equatorial (XY) plane, T is the lunar orbital period, and q;o is the

angle from the moon's ascending line of nodes to the earth-moon line at
t = to (time of injection into the lunar midcourse trajectory).

The initial conditions required for solution of equations 84 through 92 are

X Y Z X Y Z and Y and the constants required are p _, , T,
o, o, o, o, o0, o0, o e

6, and R . The quantities X, Y, 2, X, Y, 2, X , Y ,Z , X_ Y
m m m m m, m,

"
m

. o . 2 . 2
Z R R and V = XZ + Y + Z are printed out at 6-minute intervals.
m, e, vm, e

In addition, the position and velocity of the vehicle in moon-centered coord-
inates are printed out using the following equations:

X =X -X N
vm m
Y =Y-Y
vm m
: : > (93)
1 '
' 1]
1 Lo
Z =72-2
vm mJ
2 2 2
R =V§ +Y +Z
vm vim vm
(94)
ﬁ 2 L2
A4 =YX +Y +Z
vIm vm vim vim

5.2 Transition Matrix Program

The transition matrices @(t ) are the matrices which relate devia-

, t
k' k-1
tions from some reference trajectory at tk to deviations at tk 1 The

transition matrix is the 6 x 6 matrix shown in equation 95.

(017 12~ 7 7 %16
0 - """ T

o= o (95)
61 = T 7 7 %66
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k caused by a unit

The elements of equation 95 are gen-

. . .th s
where ¢ij is the change in the i  deviation component at t
deviation in the component at tk 1
erated by simultaneous solution of the following set of linear differential
equations:
X =X
1 4

X, =%y

37 Xy

X
X4 (afl/aX)xl + (dfl/dY)X2 + (dfl/OZ)X3

x5 = (afz/ax)x1 + (afZ/«aY)x2 + (afz/dZ)X3

X = (81,/0X) X + (3£,/0Y)X, + (of,/02) X, (96)

In equations 96 the partial derivatives are time-varying and are referred
to the nominal trajectory described in subsection 5.1, so that the elements
of the® matrix in equation 95 are generated by simultaneous solution of equa-
tions 96 and 84 through 86 over each 6-minute interval (t, -t ), using unit
e o . . . k k-1
and zero initial conditions as described in Section 1.

5.3 Statistical Program

The computer programs just described are used to generate input infor-
mation for the statistical program, which in turn is used to analyze various
guidance systems. The inputs provided by these programs include the
position and velocity of the vehicle in both earth and moon coordinates and
the position and velocity of the moon in earth coordinates. Also, the o
(transition) matrices just described are provided. Other inputs to the sta-
tistical program include (1) the guidance schedule, which is a list of times
at which corrections and observations are made and the types of observations
and (2) the rms errors in implementing the corrections and observations.

The three basic quantities used in the statistical program are: P, the

covariance matrix of estimation uncertainties; N, the covariance matrix of
deviations from the nominal trajectory; and V, the covariance matrix of
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velocity corrections. Initially Po = No is an input to the computer program.

Thereafter the change in P over a period when no velocity corrections are
made is given by

T
P(t,, ) =olt, . t)[PE) - KEJHEI P (4 0 1) (97)

sl

T
t , t
( k+1" k)
change in P over a period when no observations have been made while the

In equation 97, the operation cb(tk+1, tk)[ ] o] indicates the

quantity in the brackets shows the reduction in P due to taking a measure-
ment at t .

k

The equation for K(tk) is as follows:

T T -1
K(t) = P, (t )H (t ) [H1(tk’P1‘tk)H1 (t,) + Q(tk)] (98)

Q(tk) is the measurement variance, defined later, where P1 (tk) is the

upper left-hand 3 x 3 position submatrix of P(tk) and H1 (tk) is the row vector,

H, (t) =[/ex 9% /av 9%/az2 ] (99)

for optical angle measurements.

For an earth-star angle measurement, the partials are:

0L aR Xd

e— e+ e
axX -

R/ - d°

e e

(100)

3t bR +Yd

e_ e e
aY

R%/1 - a°

e e




where
aX +b¥Y +cZ
d =_
o < R > (101)
e
and
2 2 2
Re ='\A{ +Y + 272 (102)

where a, b, and c are the star direction cosines (program inputs) and X, Y,
and Z are the coordinates of the vehicle's position on the nominal trajectory

at t .
k

For a moon-star angle measurement, the partials are:

- d '
agrn _ aRvm X Xm) vm )
axX
R® /1 - a°
vm m
- d
J grn vam + Ym) vm ? (103)
oy ~ 2 2
R 1-4d
vim vm
agm chm+(Z— Zm) dvm
= J
02 2 2
R 1-4d
vm vm
where
a(X -X ) +b(Y-Y )+c(Z -2 )
d _ m m m
vm R (104)
vm
and
2 2 2
R SA/IX-X ) +(Y-Y ) +(Z2-2 ) (105)
vm m m m
where the quantities X, Y, Z, X , Y , Z are again evaluated from the
m m m v
nominal trajectory at tk.
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The measurement variance on a star angle measurement is given by:

k 2

Q(tk) = o’ (106)

Ri(tk)

2 . : .
where o is the instrument accuracy, k. is a constant, and R'(tk) is the
i i
. . . 2
range to the planet from which the measurement is being taken at tk, o
and k, are program inputs.
i
Equations 100 through 106 are for the optical angle measurements. For

range measurements, the Hl(tk) vector is given by

H, (t,) = [% —E- %] (107)

where R is the range from the planet to which the range is being taken. The
variance of the range measurements is given by

2 2
Q(tk) =0+ (kiRR) (108)

where o_ and k'R are program inputs and R is the range to the planet in-
. 1
volved in the measurement.

The equations up through 108 complete the computations required to gen-
erate the matrix P(tk) over periods when no velocity corrections are made.
The matrix N over this same period is simply calculated:

T
Nt ) =@y, ) NGty b (109)

When a velocity correction is made at tk, then V, the covariance matrix

of velocity corrections, is given by

V(t) = Gl N (t) Gt (t,) (110)
where
-1
G'(¢,) = [A JAL (e ) 133] (111)
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where A2 (tk) is the upper right-hand 3 x 3 submatrix of ® (t , tk) and Al(tk)
a
is the upper left-hand 3 x 3 submatrix. Also,

Ot t) =@t t VOl 1t ) ---alt .t) (112)

The change in N when a correction is made is as follows:

N (t) =[ L, + G] (N - P)[166+G]T + P +S (113)

where all quantities are evaluated at tk before the correction is made, and S

is the covariance matrix of errors made in applying the correction:

O35 033
S(t. ) = (114)
k /
0 S'(t
33 (t)
2 0‘2 0'2
she ) = (7 4—vit ) + ——(u’1, - Vit,) (115)
KT\ kT2 Kk 2 33 k

2 2 2 2
where u 1is the trace of V(tk) and T T and o, are program inputs,

In this computer program it was assumed that the velocity correction was
not separately monitored, so that the uncertainties in applying the correction
are equal to the uncertainties in estimating the correction. Thus when a
velocity correction is made at tk, the P matrix is incremented as follows:

P (t) = Plt) +5(t ) (116)

Equations 84 through 116 are used to determine the P, N, and V matrices
throughout the trajectory. Operations which are performed on these matrices
include the following:
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T a/ﬁIS\

r 5 /Tr(P)) > (117)
R VAR

u=4v = /Tr(V)

where Tr indicates the trace of a matrix, and N1 and P1 are the upper left-

hand 3 x 3 submatrices of N and P respectively, while N4 and P4 are the

lower right-hand 3 x 3 submatrices. In equation 117, r and v are the rms
deviations in position and velocity from the nominal trajectory, while Tand ¥
are the rms estimation errors, and Av is the rms velocity magnitude at each
correction. In addition to these five quantities, the predicted target error, T,
is computed as follows:

T
T(tk) =@ (ta’ tk) P (tk) o (ta, tk) (118)

and

r, = /Tr(Tl) (119)
Vt= /TI‘ (t4)

The quantities P, r, v, T, rt, v, are computed before and after each obser-

t
vation and correction and at periselenum. In addition, R, r, and v are com-
puted after each observation and correction and at periselenum. V and Av
are computed at each correction.

In addition to the operations mentioned, the following transformation on
the periselenum error components is done:

T
P = MP(t_)M (120)

T
NG = MN(ta)M




M 0,4
where M= (121)
_033 M
X/R Y/R zZ/R |
and M= | X/R YR Z/R (122)
YZ-2Y  XZ-ZX = XY-YX
RV RV RV |,

a

where the components of M’ are evaluated at ta on the nominal trajectory in
moon-centered coordinates. (See equations 93 and 94.)

6. EFFECT OF MEASUREMENT TIMING ERRORS

The effect of errors made in timing the optical observations was not in-
cluded in the computer program used in this study. However, the following
analysis will show the approximate upper bound on timing errors, which
is insignificant compared to other guidance system errors.

In figure 3, the geometry of an error in timing a measurement to some
landmark is illustrated. The maximum angular error caused by the timing
error is given by
VsAt sin £ Vs At sin€

"

At=tan t (123)

R - VAt cos§ R
s s

where Vg is the spacecraft velocity, At is the error in timing the measure-
ment, Ry, is the range to the reference point, and ¢ is illustrated in the
figure.

Obviously the closer the range R , the greater effect timing errors
have. Thus, two time-points are ofgparticular interest: 69 hours, which is
the last observation before the final correction on the standard schedule and
71.8 hours, which is the final observation before periselenum. Using values
of R , V , and ¢ from the standard 72.2-hour trajectory and solving equation
123 8t 69 hours and 71.8 hours,

sec of arc

AL (69.0) = 3.04 sec of time
sec of arc (124)

A6 (T1-8) =312 e of time
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Figure 3. Geometry of Timing Errors

Since the errors caused by landmark, timing, and instrument uncertain-
ties are independent, the rms measurement error, o-g , is given by

0’:'\/0'2+0'2+0'2

At 69.0 hours, the rms angle measurement error caused by 0. 8-kilo-

meter landmark uncertainty is ¢ _ = 10 arc seconds. For a 1-second rms
timing accuracy, o, = 3 arc seconds (from equation 124), and assuming a
l10-arc second instrument error,
2 2
Gz; =\A + 102 + 10 = 14.45 arc seconds

Since the landmark and instrument errors alone yield a total error of
14.14 arc seconds, it can be seen that a timing error of 1 second will have a
negligible effect on miss distance and fuel consumed, as these quantities
are affected only by operations before the third correction at 70 hours and
the case examined (t = 69 hours) is a worst case.
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The observatlons after_the third correction, which strongly influence the
estimation errors Y and V are much more sensitive to timing errors. Cal-
culations like those above, butatt = 71.8 hours instead of 69.0 hours, showed
that 0.1 second accuracy is required to reduce timing errors to negligible
importance.

7. BIAS AND ASTRODYNAMIC ERRORS

In formulating the computer program used in this study, it was assumed
that exact astronomical constants were available, and that the measurement
errors could be represented by Gaussian-distributed errors which are un-
correlated from one measurement to the next. This error model is not
necessarily a good representation of an actual physical system, however,
since it is expected that systematic errors such as those caused by astro-
dynamic uncertainties and instrument bias will be present.

It was indicated in paragraph 2.4.5 of Volume III that systematic as well
as random errors could be accounted for in actual system by implementation
of the minimum variance technique, using the so called augmented state
vector which includes not only the six components of trajectory deviations
but also components pertaining to each of the error sources. The process
by which this is done is shown here.

Assume that in addition to uncorrelated random noise on each measure-
ment, there is also some time-correlated noise. In addition, there is some
uncertainty in the astrodynamic constants. Assuming some uncertainty in
Mo’ Ko’ and R (earth gravitational constant, lunar gravitational constant,

e m em ~

and earth-moon distance), the equations of motion can be written:

X=f (X, Y, Z, 0o, b ,R _,1t

1 e m em
Y = fz (X, Y, Z: I.Le; }.l.mr Rem, t) (125)
= f_ (X, , 4, s , R ,
3( Y Her Bm em t

Taking a first-order Taylor series expansion about the reference trajec-
tory and nominal values of B’ B and R, the perturbation equations are
m em

of the form

. [9f of o1,
aX=\5%/) aX +\ =) ay + {55 ) az

X oY 0Z
(126)
24 an +(% 9t
+ u
al‘Le € <a T Ay * <aRem> ARem
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where A§’ and AZ are similar in form, except that the partials relate to
f?_ and f3 respectively. Defining x(t) as the 6-vector whose components are

AX, Ay, Az, Ax, Ay, Az and € as the 3-vector whose components are
Apg Ap and Rem the perturbation equations can be written in matrix
e

E

form:

xt = [Fiy E@] [x

- (127)
A
where
0 0 0 1 0 0
0 0 0 0 1 0 .
0 0 0 0 0 1
dfl afl dfl
F(t) = 3X Y 37 0 0 0 (128)
af2 afz afz . , .
X oY e VA
af3 af3 af3 . . .
| 0X Y 0z j
0 0 0
0 0 0
0 0 0
af of of
oMe oMrm em
of dfz afz
oMy oB oR
af3 0f3 af3
oM o oM aRan
B-34
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where the partials in F(t) and E(t) are evaluated from the reference trajec-
tory at time t.

Now considering the measurement error process, the measurements y
can be represented by the following equation:

y(t) = H(t) x(t) + n(t) (130)

where n(t) is the noise on each measurement. Note that in equation 130 it is
assumed that the measurements y(t) are uncoupled with the errors in the
astrodynamic constants. This is not strictly true, since AR would have
an effect on the measurements. However, this effect would Be'small in most
cases and will be ignored here.

Assume that the measurement error process n(t) can be represented by
the following equations:

w(t) = W(t)w(t) + u(t) (131)
n(t) =T (Hw(t) (132)

where u(t) is the white noise input to the linear dynamic process w(t).
Equation 130 can thus be written

y(t) = HO)x(t) + T (hw(t) | (133)

Now, adjoining equation 131 to equation 127,

o r T - ]
x F £ o] [x [ o
el = o o o e + 0 (134)
W 0 0 w w u

[ — - 4 L= L — |

and equation 133 can be written

r= [m o r]

- -

%

(135)
A

|€

- .

Deﬁning_ ic_*(t) as the augmented state vector whose components are AX, AY,
AZ,AX, AY, AZ, Ap yAp_, AR , W., W_ - = =w , where the w's are

e m em 1 2 P
the various types of measurement errors, equation 134 can be written in
the form
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x*(t) = F¥(t) x*(t) + U(t) (136)

where the quantities F*(t) and U(t) are defined by comparison with equation

134 . Also, the observations may be written in terms of the augmented state

vector:

y(t) = M(t) x*(t) (137)

where M = [H 01“].

The general solution of equation 136 is given by
t+1

k(t+1) = OF(t+1, 1) x(t) + f¢*(t +1, 1) u(r) dr (138)
t

where @*(t + 1, t) is defined by ®*(t) = F*(t) ® *(t) and *(t, t) = Inn where n
is the order of the matrix.
t+1
Letting f¢ #(t + 1,7 ) u(t) dT = u¥(t+ 1), then equations 138 and 137
t
can be written:

il

Wt + 1) = @t + 1, t) x(t) + ukt+ 1)
(139)

y(t)

M(t) x%(t)

In Ref. 2 the recursive equations for generating the optimal estimate

g*(t) given the observations y(t) are derived. These equations, as modifed
to suit the format of this study, are:

A A
1‘-*(tk) = Qx* (t, tk_l) x*(t, )
Av
+KHt) I:y_(tk) - M) @t t ) X ) (140)
T T -
K¥(t,) = Pt ) M7 () | M(t) Pxt) M (t) (141)
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) _ T
P(t, s 1) = & *(tk+1, tk) P*(tk) - K*(tk) M(tk) P*(tk) @ * (tk+1, t,)
(142)
* Q*(tk+1’ tk)
bt
Q¥t  ,t)=E T
k+1’ 'k fté*(tkﬂ,—r)g(-r) u (-r)<b*(tk+1,T )y dr (143)
k

Until this point the derivation given in paragraph 2.3.13 of Volume III is
identical with that given here. However, the rest of that derivation is con-
cerned with the special problem of no systematic errors on the measure-
ments; i.e., only random noise which is uncorrelated from one measurement
to the next. In this subsection, we will discuss the operations necessary to
apply the estimation equations to the situation where the effects of both
astrodynamic constant errors and bias errors are considered.

Implementation of the augmented state vector formulation requires com-
putation of several quantities not needed in the case analyzed in Volume III.
These quantities include Cbe and (bw’ the transition matrices of the astro-

dynamic errors and the noise process. Obviously, ¢e is the unit matrix,
since the errors in the astrodynamic constants will not change with time.
Determination of d)w depends upon the mathematical model assumed for the
noise process. As an example, consider the dynamic model shown in
equation 131, which is rewritten here for convenience:

W(t) = W(t) w(t) + u(t) (144)

Assume that w(t) is a 2-vector whose components w, and W are uncoupled
measurement noise components with different time constants.

-A 0
Now for purposes of illustration, assume that W(t) = 1 A = A
0 2
where the A's are positive constants. Now applying equation 138, the general
solution of equation 144 is:

t
wit) =@ (6 t)wit)+ [o (t7) k) dr (145)

t
o
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where

de (t, t )
——— =A%t t) (146)

with the initial conditions @, (to, to) = IZZ' Expanding equation 146,

®11 ® 1, A 0 *11 ®12
‘1’21 *22 ) 0 -A, 21 52 (147)
where

¢,,(0)=¢,,(0) =1 and ¢ ,(0)=¢, (0) =0

e 0= - A8

‘i’lz(t) oA,

(148)

01 (0 = - Ay 4y
‘i’zz(t) = Ay

In equations 148 the equations for 4’11 (t) and 4>22 (t) have unit initial con-

ditions, while the equations for¢ 12 (t) and¢ 51 (t) have zero initial conditions.

Solving for ¢ 11 first,

ag ) (b t)
at = A g (6 t) (149)

j ENNCENE (t e f A, at (150)

1n [¢“ (t, to)] - In [¢ll(to, to)] - A (t-t) (151)




solving for the other elements of the transition matrix:

1

$ 12 ) =, (t t)=0

e-Az(t -to)

¢, 0t t)

Equation 145 can now be written in separated form:

W1 ¢11 0 Wl t ¢11 0
= + f
V2 . 0 *az| | V2 . 8 | ° 22
(o]
t
wi(t)=¢ w (t)+ [ &  (T)u (v)ar
tO
t
w,(t) =, w,(t) +ft ¢, (r)u, (r)dr
o
SA_(t-t) t  -A_(t-T)
Wl(t)=e 1 ° wl(to) + { e 1 u, (t) d7T
o
SA_(t-t) t A (t-T)
wz(t)=e 2 ° w'z(to) +j; e 2 uz("r) dr
(o]

~

.)

(152)

(153)

(154)

(155)

(156)

Note that equations 156 are in the form of the time domain representation

of an RC filter excited by white noise u, (t). The function W(t) = A(t) was

chosen purposely to achieve this result for the purpose of illustration, as the
form of equations 156 is a reasonable approximation to certain types of radar
noise where the correlation time is determined by proper choice of Ai; i.e.,



E {wl(t) wl(to)}< €
for all e, given large enough Ai'

Implementation of the estimation equations 134 through 142 requires com-
putation of the covariance matrix of the input as shown in equation 143:

t

Q* (t, to)=E jt' @w(t,T)E(T)ET(T)CDWT (t, v) dr (157)

o
where the transition submatrices QW (t, ) are used instead of & *(t, T ),

since the assumed measurement errors are uncoupled with the state de-
viations and astrodynamic errors. Since the <I>W matrices are not random,

then
t T
Q¥(t, t ) = ]; (6 TYU _(T)® " (t,T)dT (158)
(o)

where Uo(’r) is the covariance matrix of the input noise; i.e.,

Uo(-r) = E { E(T) ET (T)}. Solving for Q¥ (t, to) in terms of the individual

components:
f t “2A (t-T) )
“ e 1 E{ulz} dT
o
Q* (t, to) = (159)
t =2A_(t-7)
2 2
f e E{u2 } dT
Lto -
[ 2 -2A (t-t) ) ]
0'1( | -e 1 o
ZAl
Q* (t, to) = (160)
) Z<1 _e—ZAz(t-to)>
2
L ZAZ |
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This completes the formulation of the ""augmented state vector' estimation
system for the case of a measurement noise consisting of two uncoupled error
sources with different correlation times and variances. If required, other
measurement error sources could be added simply by including more com-
ponents in the w(t) vector.

A problem formulation such as that just described can be used for various
types of error sources. For instance, for a bias error the time constant can
be chosen very large (i.e., Ai very small). An important point, however, is

that the dynamic model describing the random errors must be chosen on the
basis of previous experience rather than on the data itself. Thus the
""optimality'' of the minimum variance procedure for reducing errors depends
to some extent on the proper choice of a mathematical model to represent the
dynamic process; i.e., for the type of estimation just described, the efficiency
of the system depends upon proper choice of correlation times and input vari-
ance in equation 160. As Kalman remarked (Ref 2) in 1960, there is no known
joint optimization of both the estimation procedure and the dynamic model.

It should also be pointed out that most of the above development is appli-
cable to the use of radar tracking with its high data rate and attendant cor-
related noise characteristics. It is expected that for a low data-rate optical
system with a measurement every half hour or hour, the errors can con-
veniently be described by one random, uncorrelated component and one bias
component. However, even in these cases correct variances should be
assigned to the measurement error components in order to achieve optimum
performance. Recent results of other studies indicate that overall system
performance is not badly affected by ignorance of some error sources (Ref. 6).

8. CHANGE OF COORDINATE SYSTEM

After transferring the space vehicle from the vicinity of the earth to that
of the moon, it will be advantageous to convert the guidance and control cal-
culations from an earth-centered to a moon-centered coordinate system. This
procedure is indicated primarily because by so doing, the errors caused by
uncertainties of the moon's position and velocity with respect to the earth are
reduced in importance. Thus these small errors are not carried along
throughout the lunar phase of the mission as was done in the analysis of

astrodynamic constants in Ref. 6. In that analysis, the constant R , the
em

earth-moon distance, was shown to have a significant effect on measurements
in the vicinity of the moon although ARem was assumed tobe only 2 kilometers.’

This could have been avoided by a coordinate change as will be seen below.

Ref. . . . .
ef. 6 Smith, G. L., Secondary Errors and Off-Design Conditions in Optional

Estimation of Space Vehicle Trajectories, NASA Ames, NASA 7N
D-2129, January 1964.




Assume that at tc’ the vehicle's state has been determined in earth co-

ordinates tobex=(X , Y , Z , X, Y , Z ). There is some error in the
- e e e e e e
state estimate, and there is also an error, Ax , in the estimate of the moon's

position and velocity. Then the error gm after coordinate transformation is

given by:
(161)

The covariance matrix of the estimation errors after coordinate trans-
formation is then given by:

P
m

E{GE+az_)E +a% )"}
(162)

{*"”T ~ ~ T ~ T - . T}
F{(xx +x b4 +AX X +AX AX
_— - T=m -m - -—m~ =m

Thus the covariance matrix is the sum of the covariance matrices of the
trajectory estimation errors and the lunar estimation errors plus the
covariance matrices of crossproducts. These crossproducts are not neces -
sarily negligible, but in any case the maximum by which the uncertainties
in each component can increase after coordinate transformation is

T
m
negative along the major diagonals, because when each angular measurement
is made to the moon, a positive error in the moon's position in earth co-
ordinates results in a negative error in the estimation of the position of the
vehicle in earth coordinates.

- - -~ ~ T ~ T
A . i i
E( _)fmAf ). The covariance matrices E (x AX ) and E (Afm X ) are

. e ~ o T .
Since the P matrix is incremented by E (A_}im aX ) at worst, it can

be seen that the degradation of the estimate by adding in the small uncer-
tainties in lunar position and velocity will be slight, so long as the coordinate
conversion has been made early enough. Using the standard guidance
schedule described in Volume III, paragraph 2.4.2, table 2-8, it is seen

that t = 63.5 hours is a reasonable time for coordinate conversion on the
72.2-hour trajectory; i.e., just after the last sequence of earth-angle
measurements has beenmade. It was shown in computer runs that increase in
the P matrix by a small amount at this point hadlittle effect on the final results,
What can happen if the coordinate conversion is not made, however, can be
illustrated simply as in figure 4.

-
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Figure 4. Illustration of Effect of Uncertainty in Moon's Position

In the planar diagram of figure 4, an error in the moon's position of 2 km
along the y-axis results in an angle measurement error of:

m 2
R 2000

In e

= 1 milliradian (163)

Thus it can be seen that errors of this type will be similar to the landmark
errors described in paragraph 2.4.3.4 of Volume III.
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9. POWER AND ANTENNA SIZE REQUIREMENTS FOR TWO-WAY MICRO-
WAVE RANGING OFF LUNAR SURFACE 4

In this subsection rough requirements are developed for a two-way micro-
wave system for determining the range of a spacecraft from the moon. Lasers
are not considered since their only apparent advantage would be the gener-
ation of a narrow beam without a large antenna.

In paragraph 2.4.6.2 of Volume III it was shown that ranging information
some 17,000 kilometers from the moon's center with an accuracy of about
10 kilometers would be useful in reducing trajectory uncertainties. It is
apparent that the requirements of a two-way microwave system for this kind
of performance are severe. Before going into these problems, however,
some of the factors which may contribute to ranging errors are considered.
The following analysis will assume that the ranging measurements are to be
made at 69.1 hours on the standard 72. 2-hour trajectory. At this time the
spacecraft is 16, 403 kilometers from the center of the moon and is travelling
at a velocity of 1325 meters per second with respect to the moon.

First, consider the maximum range error due to space vehicle movement
during the two-way transit time of the ranging signal. At a distance ofd =
16,403 -1738 = 14, 665 kilometers, the transit time is 2/

2d _ 2 (1.4665) (10%)
c 3 (10°)

Ats= = 0.098 second (164)

At a velocity of 1325 meters per second, the maximum error which could
be caused is

Ad = (1325) (0.098) = 132 meters (165)

which is negligible compared to the assumed allowable random errors of 10
kilometers.

Also, uncertainty in the velocity of propagation will cause negligible errors.
If c is known to within 400 meters per second, the error in a 0.1l-second
round-trip time is only 40 meters.

Pointing error will cause a problem only if this error is greater than half
the beamwidth. It will be shown below that a half beamwidth on the order of
0.5 degree may be required.

2/

—' The notation used in this section is not necessarily consistent with the
notation used in other sections of the appendix and should be considered
independently.



A possible error source in microwave ranging at the distances considered
will come from the fact that the moon's surface is curved and much of the
reflected power will be returned from distances greater than desired. Ob-
viously this could be time-gated out, but then some of the transmitted power,
which is at a premium at the ranges considered, would be wasted. There-
fore the allowable beamwidth is defined by the ranging error which can be
tolerated.

The situation is illustrated in figure 5.

The range spreading error, is defined as:

AR =1 -(R-71_) (166)
2 2 . 2
AR:RcosllJ—»\/rm -R sin ¥ -R+rm (167)
For
. 2
(R s1n¢> «< 1,
r
m
2 . 2
aR_ R _sin ¥ (168)
2r
m

SPACECRAFT

RANGING ERROR:=£-(d-Rpy)

I5S89A-VA-60

Figure 5. Ranging Error Due to Curvature




Equation 168 has been plotted for half-beamwidths of 0.5 and 1 degree as
a function of range on figure 6. It is apparent that at ranges on the order of
10,000 to 20, 000 kilometers, a half-beamwidth of 0.5 degree is required to
keep the range spreading from exceeding 10 kilometers.

Wider beamwidths could be used, but then the power requirements would
be increased due to the range spreading.

Another source of error would be variation of the lunar surface altitude.
This would be averaged out over a wide region, however, when ranging is
done at long distances.

In order to calculate power and antenna size requirements for a micro-

wave system, the following two-way radar equations from Skolnik (Ref. 7) for
a parabolic antenna system are employed:

Received power:

P G5\ %
P = (169)
r (4“)3 4

Antenna gain:

4T A
G=-% (170)
A

Antenna beamwidth;

0 = 6;’)\ degrees (171)
where

Pr = received power

Pt = transmitted power

A = wavelength

o = reflective area

R = one-way range
Ref. 7

Skolnik, M.I., Introduction to Radar Systems, New York; McGraw-
Hill, 1962 —
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A = antenna capture area
p = antenna efficiency

8 = beamwidth

£ = antenna diameter

G = antenna gain

Since all the transmitted power hits the target (the lunar surface) the
target cross section, o, is given by

2
~ RO
- = kTT(T (172)

where k is the reflection coefficient and © is in radians. Substituting
equation 172 into equation 169, combining equations 169, 170, and 171, and
solving for the transmitted power,

R 2 Pr
Pt = 20.2 [p.—l] = (173)

which gives transmit power as a function of received power, range, antenna
size, and the two constants. Assuming antenna efficiencyp = 0.55 and the
reflection coefficient §_/ k = -12 db (or 0.063),

R 12
P, = 1060 [z_] P_ (174)

To calculate the receiver minimum detectable signal level, the receiver
bandwidth must be defined. Assuming a pulsed system with a required range
resolution of 10 kilometers the pulse length (assuming no pulse compres sion)
is approximately

o Zﬁd = 2(102 = 66.7 microseconds (175)

(3) (107)

— This value is quite uncertain. The nature of electromagnetic reflections
from the lunar surface is the subject of considerable investigation at the
present time by Evans and Pettengill at Lincoln Laboratory.
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. . 1
and the system bandwidth is B = == 1/66.7 = 15 kc. For a receiver noise

figure, E‘, of 10 db, the minimum detectable signal (MDS) (noise level) is

MDS = kTAfF = - 152 dbm (176)

Substituting this value into equation 173, the power required for a 0-db S/N
ratio per pulse with no losses can be determined. Assuming a signal-to-
noise ratio requirement of 10 db, system losses of 5 db, and incoherent pulse

integration gain (200 pulses) of 12 db, the required peak transmit power can
be written

R
P, (dbm) = 20 log <T> - 118.75 (177)

For a 6-inch antenna at 10, 000 kilometers, Pt = 5750 watts peak. Ob-

viously, a larger antenna is required. With a 4-foot antenna, 90 watts peak
is required, which is a little more reasonable. A curve showing peak power

requirements versus range for several antenna sizes is given in figure 16 of
Volume III.

The assumption of 200 pulses integration is based on the number of pulses
which can reasonably be transmitted before receipt of the return pulses. As
shown previously, the round-trip time is about 0.1 second. Then the duty
cycle for 66.7-microsecond pulses will be

9.‘3;51 =0.133
10

which is the ratio of average power to peak power.

It is to be emphasized that the analysis presented in this section is not
necessarily applicable to any particular radar system, and it is not known
whether or not the system described could be mechanized. The objective
in this appendix is to use fundamental relationships to determine the approxi-
mate power and antenna requirements for microwave ranging off the moon.

10. COORDINATE ROTATION

Throughout most of the analysis, a cartesian earth-or moon-centered
(XYZ) coordinate system is used. In analyzing guidance system performance
at periselenum, however, it is often more convenient to rotate the error
matrices from cartesian coordinates to an altitude-downrange-crossrange
(adc) coordinate system. The situation is illustrated in figure 7, where it is

desired to rotate an error vector from the planet-centered XYZ system to an
adc system.




PERILSELENUM

(X%, 2,%,V,8) I7S0E- VA-126

Figure 7. Geometry of Coordinate Conversion from XYZ System to
Altitude-Downrange-Crossrange System

Assume that the desired periselenum conditions are described by (X, Y,

Z, 5(, 'i', Z). Then unit vectors in the altitude and downrange directions can
be written:
Xi + Yj + ZE
a = R (178)

d = v (179)

where R = «/X2 + Y2 + Z2 is the desired periselenum radius and

A% ='\A‘(Z + ’i’z + ZZ is the desired velocity. In order to generate an

orthogonal coordinate system, c, the cross-range unit vector is given by the
product of a and d.
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(YZ - Z2¥)i + (XZ - ZX)j + (XY - YX)k

c=dxa-=

RV

(180)

Assume a position error vector at periselenumofr =e i + e j te k.
—e b y z—

The component of z, in the direction of a unit vector a is given by r

that

Gomp , (£,) =z, -

Compd(_lle)=r - d

-—e —

Comp c (—r—e) "le’

|o

Ke)

e X+e Y+e Z
X y Z
R

eX+eY+ei
b'e y Z
\"2

+a, so
e —

(181)

(182)

e (YZ -ZY¥)+e (XZ -2X)+e (XY - YX)
X Y Z

RV (183)

Defining the components of r, in the altitude, downrange, and crossrange

directions as ea, e

written in matrix form:

Y/R Z/R

Y/V Z IV

XZ - 2X XY - YX

[e [ X /R

a

ed = | X/v

e Yi - Z'i'
L C J L

RV

r = M'r
—a -_e

RV RV

q

e

q e equations 181 through 183 can be adjoined and

e (184)

(185)

Rotation of the velocity errors can be accomplished in a similar manner,

so that

(186)

Defining the 6-dimensional error vector as¢ a (after rotation) and ¢

before
T M!
—-a
£ a7
La 033
B-52
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Now the covariance matrix of errors in the terminal position is given in
terms of the rotated coordinates by

T T, T
Cov (E )=E{s € }:E{Ms € M}= ME{& £ T} MT (188)
a —a —a — e—e —e—e
Ty, . . . -
But E{ € o f, } is just the covariance matrix of deviations from the

nominal trajectory, or the N matrix, as previously defined. Then calling the

N matrix after rotation into the altitude downrange and crossrange system,

N,
a

N_ - MNM * (189)

where M is defined in equation 187. Either the position or velocity 3 x 3
covariance submatrices can be rotated separately by using M'; e.g.,

T
= M! [
(N a—MNlM (190)

1

A development identical with that employed above can also be used to
rotate the P matrices; i.e.,

Pa = MPMT (191)

It may have occurred to the reader that all that is done in this appendix is
to rotate the error matrix from one Cartesian coordinate system into another,
when what should be done is to convert the errors into a spherical coordinate
system, since this would be a more meaningful way of describing errors
relative to the moon. However, it should be mentioned here that the error
analysis done in this report is concerned only with second-order statistical
averages - i.e., covariance matrices - which are completely described by
an ellipsoid. This means that there is some discrepancy between the real
distribution of errors around the moon, and that which can be described by
an ellipsoid. This is illustrated in figure 8, where the error distributions
are shown as different volumes in order to illustrate the difference in shapes.
Note that the shaded error distribution cannot be described in terms of sec-
ond order averages since terms of the form E (XZY) and E (Y‘?‘X) are required.
There are two reasons why this is not done: (1) comparison of second-order
statistical averages with actual distributions indicates that the approximation
is good and (2) use of third-order averages is too difficult mathematically
(if it can be done at all).



ERROR ELLIPSOID

T TIIIITID
(711117777

REAL ERROR
DISTRIBUTION

W////////////////% |

I750E-VA-127

Figure 8. Difference Between Real Error Distribution and
Covariance Ellipsoid

-54




N EEETEEEEEEEEE.

APPENDIX C

LUNAR PARKING AND DESCENT ORBITS

Much of the analytical background for this phase of the mission is an
integral part of either the simulation description (Volume III) or Appendix
A (Volume V). In fact, all that remains is a detailed derivation of the
various trajectory parameters and a determination of input error mag-
nitudes to be considered.

The cartesian vector solutions to the Keplerian orbit (Ref.l) are re-
peated here, since they dominate much of the nominal orbit derivation.

Given the state vector (_)__(k) at time (tk), the position vector components

at time (t ) are: 3
m =
2 1
X . o={1-2(-cosv)| X +[t -t -2 (v -sinV)JX (1)
mj N Kj m kW k,j43
j=1,2,3

and the velocity vector components are:

[ P P 5
ij _[ r T mnv] Xk, i-3 [ " (1-cos v) ij (2)
m k m
j=4,56

where p is the lunar gravitational constant, a is the semimajor axis of the
ellipse, and y is the incremental eccentric anomaly, which conforms to
the equation

iy
———-'H(t -t )=v -sinv + —Esinv+—— (1 -cos v) (3)
a3/2 m k a

Jra

Ref, 1 Pines, S., H. Wolf, D, Woolston, and R. Squires, Goddard Minimum

Variance Orbit Determination Program, Goddard Space Flight Center Re-
port.




The saclars r, and di represent the radius vector magnitude

R, | and the

dot product of the radius and velocity vectors :R__l . -Yi respectively.

Major notation used in the analysis is listed below.

LIST OF NOTATION

English Alphabet

£ < cH WX DWW ZZR"DO0HWH W

<X

")

d

(¢] o o

o

Astronomical length vector

Eccentric anomaly beyond periselenum

Velocity increment vector

Guidance law matrix

Row vector of partial derivatives of observables

Identity matrix

Six-dimensional weighting vector

Total number of observations on parking orbit
Covariance matrix of deviations from nominal state
Covariance matrix of errors in estimated state

Variance of measurement errors

Selenocentric instantaneous vehicle position vector
Selenocentric unit vector in the direction of a known star
Period of parking orbit

Unit eigenvector corresponding to maximum position uncertainty
Selenocentric instantaneous velocity vector

Direction cosine matrix for final tangential, vertical, and
transverse errcr

Six-dimensional state vector

Magnitude of an observable

Parking orbit radius, semimajor axis (general)
Descent orbit semimajor axis

Length or component of B vector

Random error

Dot product of R and V
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Descent orbit eccentricity

Deviation from nominal velocity increment vector

Inclination angle between the earth's equator and the earth-moon
plane

Mean lunar radius

Magnitude of R

Component of S vector

Time

Component of U vector

Magnitude of V.

Deviation from nominal state vector

Deviation of observable from reference value

Greek Alphabet

o o H ™

Unit vector normal to R in star-vertical measurement plane‘l'/
Covariance matrix of input errors

Variation

True anomaly

Displacement of moon beyond vernal equinox
Displacement of sun beyond vernal equinox
Eigenvalue of position uncertainty covariance matrix
Selenocentric latitude

Lunar gravitational constant

Gravitational constant of earth

Gravitational constant of sun

Incremental eccentric anomaly

Standard deviation

Time interval between observations on parking orbit
State transition matrix

Selenocentric longitude

Except in Section 3.



Superscripts

[ ]T Matrix transpose

[ ]-1 Matrix inverse

SubscriEts

A Pertaining to termination of midcourse

E Pertaining to termination of parking orbit
F Pertaining to beginning of descent orbit
i,j Vector or matrix componentsy

L Pertaining to termination of descent orbit
m Pertaining to the mth observation

M Pertaining to the last observation

n Star index number

O Pertaining to the beginning of parking orbit

P Pertaining to the first pass over desired periselenum
1,2,3 X,Y, and Z cartesian position components respectively

4,5,6X,Y, and Z cartesian velocity components respectively

Symbols Above Letters

() Predicted value

() Actual value

™) Uncertainty, error in estimated value
(/\) Indicated or observed value

Symbols Below Letters

(__) Vector

1. DETERMINATION OF NOMINAL FLIGHTPATH

With the nominal parking orbit defined by two noncolinear vectors,

2/ For time-varying vectors and matrices, the first subscript denotes the
time.




T COos )\O cos q.lo

= | To €08 Ay sin Yo (4)

gu

rO sin )\O

Tp cos A p cos Y p

- A i
R, * ry cos PsmlJJP (5)

rP sin )\P

of equal magnitude,

ro = I'P = a (6)
The period of the circular orbit is

Zwa3/2
Tz — (7)

Vm

With the vector (EP) as the orbital plane reference,

EP =0 (8)

and the eccentric anomaly at time (to) is

1
= 6 = 9 -_— .
Eq o {sgn( O)} arc cos {az (EO EP)} (9)
This defines the quadrant of the angle, when the inverse cosine func-
tion is defined as the principal value, less than m radians in absolute value.

With the injection point as the reference in the orbital plane,

v =0 (10)

the incremental eccentric anomaly separating (to) and (tP) is

vp = 2T - Eg (11)

for a retrograde orbit.



The fraction of a period separating the two vectors is merely (vP/Z ™).

Finally, the radius vector is always normal to the velocity vector in a circu-
lar orbit, so that

dg = O (12)

All of the necessary quantities are now available for computation of the

initial velocity vector XO This completes the geometric definition of the

parking orbit.
In order to provide an automatic rendezvous capability in the event that no
landing is made after descent, the descent orbit period is chosen equal to the

period of the circular orbit. It follows that

ay = a (13)

ed = l-a (14)

The eccentric anomaly of the descent arc (EF) must be 90 degrees for

equation 13 to hold. From the well known relation

2
l -e sin E
sin 6. = d F (15)

l-ed cosEF

plus the fact that the true anomaly separating tF and tL is the same for the

circular and elliptical orbits,

. 2
sin (-)E = l-ed (16)

Since the true anomaly is never smaller than the corresponding eccentric
anomaly, and tE lags tL, the principal value of GE

than w/2 radians in absolute value. The eccentric anomaly of the descent
arc, as measured on the circular orbit, is

is negative and greater

E. = 6 (17)




Since descent is initiated on the second revolution, the incremental eccen-~
tric anomaly at descent time is

Ve = 2T + {pr1nc1pal value of (EE - EO)} (18)

In this case EE is negative and EO is positive; the value of (vE) is

v = 41r-|EE|-EO (19)

Since this is measured along the circular orbit, the time interval separa-

ting to and tE is

v

E
tg ~to =37 (T) (20)

By substituting E for m and O for k in equation 1, the position vector

RE =R F at descent initiation can now be computed.

Now with tF as the reference initial point of the descent orbit,

VF = 0 (21)

vL = - EF (22)

The descent time can be computed from Kepler's second law:

ad3/2

tL—th {IEF - ey sin EFI} (23)
/1

Finally, with

ro= a = ad (24)



the velocity vector at time t can be computed from equation 2:

XL_'L- (cos vL) XFj
3/2 (25)

(vL - sin vL)

Xp, 543 T

(a,)
d
(tL-tF) T

in which the position vector (RL) is the nominal periselenum radius vector,

XLl rL cos )tp cos qu
X, | = |rLcos2psin Yo (26)
XL3 rL sin )\p

Magnitudes of radius vectors, velocity vectors, and their dot products are
always computed from the same simple expressions:

T =\/(xK1)2 +-(xKZ)2 + (XK3)2 (27)
Vi = «/(XK4)2. + (XKS)Z + (XK6)2 (28)
dK = &K. XK (29)

The nominal perigee velocity vector is readily computed from equation 2
‘with the subscripts m and k replaced by L and F respectively and (a) replaced

by (ad).

The nominal velocity impulses are merely the vector differences between
velocities before and after thrust application. Since injection into the parking
orbit is assumed impulsive and tangential,

X . =X_,, 1<js 3 (30)
XAj =(vA/VO) XOj’ 4<j<6 (31)

where Va is the assumed speed at midcourse termination.




|

l

A typical speed of 2400 meters/per second is assumed for (vA), and

= - , 1<j<3
FAj XO, j+3 XA, J+3 12)= (32)
Similarly,
= - <j<
FEj XF’J.+3 XE’J.+3, 1<j<3 (33)

in which the velocity vector at t_, is computed from equation 25 and the ve-

F

locity vector at t_ follows from equation 2 with the subscript m replaced by

E
E and k replaced by O.

2., TYPICAL INPUT ERROR MAGNITUDES

2.1 Thrust Tolerances

With three independent and orthogonal thrust error components of zero
mean and equal variance, the total rms thrust error is

V3 o (34)

where T is the rms thrust error in each axis, This applies to both thrust
application and thrust measurement,
Although the velocity increments are assumed impulsive for the analysis,

typical error figures should be derived on the basis of finite pulse width, At
injection the total impulse is

v, -\/;;‘ = 2400 - 1589 = 811 meters/sec (35)

This is equivalent to a time-acceleration product of 82,8 earth g's, corres-
ponding to 13.8 g's for 6 seconds in the allowable acceleration limit (Ref, 2)
At half thrust for twice as long an interval, the acceleration is essentially

Ref., 2
Bryson, A. E., K. Mikami, and C, T. Battle, Optimum Lateral
Turns for a Reentry Glider, Aerospace Engineering, Vol. 21,
No. 3, March 1963, p. 21,




7 g's for 12 seconds. The linearity error in an accelerometer is the pre-
dominant factor at this g-level; a reasonable estimate of total thrust measure-
ment error at injection iss

= 1
10 es x 7gx 12 sec = 0.00825 meter/sec (36)

or an rms error in each axis of

0.00825

V3

% 0.005 meter/sec. (37)

Actually, this uncertainty in the applied impulse is outweighed by orbital
velocity uncertainties typically encountered. To avoid possible implication
of stringent impulse measurement specifications, a lenient tolerance of 0. 05

. . 3
meters per second rms error in each axis is assumed here, —/ and therefore
the thrust measurement error plays a very minor role in this study.

Descent thrust pulse width is not as readily fixed by obvious considera-
tions, and no detailed attention has been devoted to descent mechanization,
As an expedient, the rms impulse measurement errors have been assumed
equal for descent and injection into the parking orbit.

For control of applied thrust, the errors are not expected to be so small.
One percent of the applied impulse is a reasonable estimate of rms applica-
tion error. For injection, then, the rms error in each axis is typically

(0,01)(24200-1589) = 5 meters/sec (38)

For descent, the total nominal impulse is 150 meters per second; rms
error for each axis in applying the descent impulse is typically

w =1 meter/sec (39)

Unfortunately, however, this is an excessive amount of error for the
FTOA guidance system assumed here. As a rough indication of the resulting
rms tangential periselenum miss distance, consider the extra arc length
traveled over a quarter of an orbit (90-degree descent) due to an excess

3/ See Table 3-2 of Volume ILL
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velocity of 1 meter per second: Equation 7 gives about 2 hours as the period
of a low altitude orbit, and

1 Es—e:—:—l: x (1/4 x 7200) seconds = 1800 meters (40)

The 3-0 tangential error would then exceed the allowable specification of 5
kilometers, even without any navigation errors,

To prevent the guidance errors from dominating the results, it is neces-
sary to assume an applied descent thrust error of 0.1 meters per second rms
in each axis and to determine the navigation requirements with the under-
standing that the FTOA guidance scheme is inadequate and a superior tech-
nique must be used in the actual system mechanization,

2.2 Initial Conditions

In previous studies (Ref. 3 and Ref, 4) it is assumed that the initial state
vector estimate coincides with the nominal trajectory. At the beginning of
the lunar parking orbit, however, a more accurate state vector estimate will
be available from midcourse navigation information. A distinction is there-
fore made between the deviations from the nominal initial state and the un-
certainty in the actual state. For a simulation in which the sensitivity co-
efficients used in data processing are computed from the estimated trajec-
tory, the initial deviations from nominal state obviously play a minor role.
Initial rms values of 10 kilometers and 10 meters per second were chosen as
the standard position and velocity deviations in each axis respectively.

The standard initial uncertainties in each axis were assumed to be 1
kilometer and 1 meter per second for position and velocity respectively,
These values were selected in order that the total rms initial uncertainties
would lie roughly in the vicinity of the terminal midcourse navigation errors
as given in Section 2 of Volume III,

Ref. 3
Smith, G. L., S. F. Schmidt, and L. A. McGee, Application of
Statistical Filter Theory to the Optimal Estimation of Position and
Velocity on Board a Circumlunar Vehicle, NASA TND-1208, 1961,

Ref. 4 (
McLean, J. D., S. F. Schmidt, and L. A. McGee, Application of
Statistical Filter Theory to the Optimal Estimation of Position and
Velocity on Board a Circumlunar Vehicle, NASA TND-1208, 1961,
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2.3 Measurement Errors

As explained in subsection 3. 2 of Volume III, the errors in the measured
angles are dominated by local vertical pointing error. Due to the absence of
a lunar atmosphere, errors on the order of a tenth of one degree are con-
sidered within the anticipated state of the art. Because of the tradeoff be-
tween measurement uncertainty and frequency of observation, the choice of
an assumed standard measurement error for this analysis is not especially
critical. A value of 1 milliradian rms was chosen for the first series of
runs, and larger values were investigated for the complete guidance simula-
tion.

Wherever applicable, the rms uncertainty in the observed altitude was
assumed to be 1 kilometer, including terrain irregularities,

3. TRIAXIAL LUNAR OBLATENESS (Ref, 5)

.th . . .
The 1t component of perturbing acceleration due to the nonspherical shape
of the moon can be approximated as

2 2
T & i 5X 5X

P

r r T
where
\ = (1 -0,61)p (42)
B =  0.0006294 (43)
and
3 .
k= (7)(0. 397) = 0. 5955 (44)
Ref, 5
Brouwer, D. and G. M. Clemence, '"Moments of Inertia of the Moon, "
A Review of Space Research, National Academy of Sciences, National
Research Council Publication 1079, Iowa State University, June -
August 1962, pp. 3-9, 3-10.
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In these equations, k, and k2 take the values

1

kl = 1, i=1, 3 70
kl = 3, i = 2
P (45)
kZ = 1, i=1, 2
k. = 3 i= 3
2 </

4, STATE TRANSITION MATRIX

The transition matrix elements follow directly from equations 1 and 2.
For 1<i< 3,

®m-1
¢mij = 1- A <1 - cos vm> 6(i, j)

rm-l

a

m-1 .
- X . siny VYV (v
m-1,i|A m j\ m
r
m-1

)

(46)

( ) m-1 “m-1
- l-cos v V.
m jla

m-1 m-1

a3/2
+ (tm_ tm_1> __m-1 <vm - sin vm> 6(j, i+ 3)
VAT

A

H>

X1, 143 | 32
- a_ 4 l—cosvrn V..(vm>
m-
e j
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and for 4 <1 <6,

“Ham-l . ) .
bmiy T | TR N e[ S0
m m-1
X 1 v V
- ﬁxm-l, i3 = ,1\‘ Jam_l cos V__ j(vm)
m m-1
sin v
m
)
2 a'm—l
. . (47)
/am-l sin vm : A A _
- r V.|t +r v.| T
-2 A2 m _]( m—l) m-1 J( m)
r r
am -1
+ [1- — <l-cos vm>]6(1, J)
rm
A 1
- X . a sin v V.[v
m-1, i§ — I: -1 m _]< m)
'm
a l -cosvy )
+ <l-cos v )V_ Qa )]_ m-l( m VG )}
mj/ j m-1 ';2 i\ m
m
where
1, m=n
6 (m, n) = {0 m4n (48)
and
A
v.( ) = & ) (49)
j 9 X
m-1, j
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can be found by differentiation of the various Keplerian relationships; e.g.,
from the definition of the semimajor axis,

v.{a _'3-2 v .
j(m—l) m-1 " j am_1>

s R () [0 o) o) ]
+ﬁ [5(4,j)+ 5(5:5)+ 8(6.4) ]}

C-15/C-16
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APPENDIX D

LUNAR LANDING ANALYSES

In this appendix equations for the lunar landing analyses are derived and
choices of landing parameters are explained. Mathematical notation used is
listed below.

LIST OF NOTATION

English Alphabet

-

sp

o]

L VIR L

=

General control quantity
Deviation of F from the reference value

. . 2
Acceleration of gravity at the earth's surface, 9.80665 m/sec

Altitude above the lunar surface

Fuel specific impulse

Line-of-sight range from the spacecraft to the desired landing
site

Mean lunar radius, 1738 kilometers

Magnitude of the vehicle thrust vector

Time, referenced to the time of landing maneuver initiation
Magnitude of the spacecraft velocity vector

General state variable

Deviation of X from the reference value

The general observable quantity

Deviation of Y from the reference value



Greek Alphabet

a Orientation of the spacecraft thrust vector relative to the ve-
locity vector

Y Spacecraft flight path angle relative to spacecraft local horizontal

6 Angular displacement of the spacecraft from the desired landing
site in lunar central coordinates

n Lunar gravitational constant; 4, 89820 x 1012 m3/sec2‘
Root mean squared value

¢ Line-of-sight angle from the spacecraft to the desired landing
site referenced to spacecraft local vertical

Q Line-of-sight angle from the desired landing site to the space-
craft referenced to landing site local vertical

Superscripts
T .
[ ] Matrix transpose
-1 s
[ ] Matrix inverse
Subscripts
B Denotes quantities pertaining to a system using beacon tracker
observables
D Denotes quantities pertaining to a system using doppler naviga-

tion observables

f Denotes final value

i, j Matrix or vector element indices

m Time index

M The maximum value of m

n Indicates a random error quantity

o Denotes initial value

P, 9 Matrix or vector indices

r Denotes reference value (value on the nominal trajectory)

X Denotes a quantity pertaining to the state variable, X

Y Denotes a quantity pertaining to the observable, Y
D-2
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Operators

(. ) Derivative with respect to time %-)-
o . . . d( )
() Derivative with respect to T, T

<( )> av Ensemble average overall possible missions

Symbols above and below quantities

() Estimated value or value computed on the basis of observed
information
() Estimation error, difference between the actual value and the

estimated value

() A vector (column matrix)

1. OPTIMUM TRAJECTORY PROGRAM

1.1 Equations of Motion

This is a steepest ascent program designed primarily for determining
optimum lunar landing trajectories for constant-thrust vehicles.y The pro-
gram uses the method of steepest ascents to determine the coefficients of a
second order polynomial (in time) vehicle pitch program which will enable the

vehicle to land in minimum time.

The equations of motion are: (See figure 1)

s - u _ M +T sin

r +h 2 m

c (r +h)
c
4= us T cos 7
h

r_t m (1)
]..'1 = S
: 180
0 = — % _ (deg/sec.)

Y A more thorough explanation of this method of obtaining optimum trajec-
tories can be found in A, E. Bryson and W. F. Deuham, "A Steepest
Ascent Method for Solving Optimum Program Problems, Journal of
Applied Mechanics, June 1962, pp. 247-257. —
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where

Ny My and n, are the coefficients determined by the steepest ascent

m_+ mt (m = constant)

2
m T N,t+n,t: pitch program

3
vertical velocity
horizontal velocity

initial vehicle mass

mass rate of flow
altitude of the vehicle

the central angle covered

procedure,

Using numerical integration, the program computes the trajectory deter-
mined by the vector equation

o -

where

=+ |o |o
1l

1=

= f(b, t, n°)

a column vector whose components are u, s, h, @

a column vector whose components are u, s, h, ©

time

a column whose components are Nys My Ny

—~
N
~—

Simultaneously with this computation, three additional trajectories are gen-
erated by using:

B' -

f[B(i),t, n° +61(i)] ; {i: 1, 2, 3}

(3)



where

i h .
611(1) = the it column of the 3 x 3 matrix [61]] of perturbations in n defined
as: -

[an]= 0 &n, 0 o (4)

L 0 0 6n3 ]

E(i) = the ith column of the matrix [B] with elements hi’ éi’ 'hi, and 61
Q(i) = the ith column of the matrix [B] with elements u, S hi’ and ei.
Integration of equation 2 stops when s = S (the desired final value of s). The
time is denoted by tn. Integration of equation 3 stops when .= S The time

f
is denoted by t..
i

1.2 Optimization of Pitch Program

When the integrations indicated above have been completed, the program
automatically computes new values of npr My and N3 to be used in the next

iteration of the optimizing process. The computations performed are indi-
cated below and are written in the nomenclature used by Bryson and Deuham.

[ (u, - ult )
b= f n (5)
| (b - e )

-(u.(t.) u(t )) oy,
6_1._',11 = 11 ke n = 1(2) i ={l, 2, 3} (6)
_(hi(ti) - h(tn)) 64‘i
¢ =t
69, = (t, -t ) {1 =1 2 3}
(7)
(8)
D-6




rwlm 6%(2) 2
ony oy
(1) (2)
A e e | 92
v én, on,
64,3(1) 54,3‘2)
i 6113 61']3 _J
(647
8¢
|2 3/
247 o)
6¢3
SX;J

In addition, the following definitions are made:

o] T[]
L =[>\¢]T[A-]_l Mg (12)
Toe =3¢ [A] 724 (1)

The matrix [A] is a 3 x 3 diagonal weighting matrix used in determining
the relation between the changes in Ny My and yM to be made from iteration

2/

— The transpose of the quantity defined as [)‘41] here is the same as the pro-
duct [)\p] T I:G] in Bryson and Denham. |

3/

—" The transpose of A¢ is equal to the quantity \¢T [G] in Bryson and
Denham.



to iteration. (The values of the elements of [A]used in this analysis are not
included in the report provided by Raytheon.)

Next the vector df is defined; df can take on two possible values, de-

2 T 1
pending on the sign of the quantity (dP) - y [I\NJ]— y; where (dP) is a pre-

determined constant dependant on the maximum step size of the changes in
quantities ny» By and n, to be allowed from iteration to iteration. (The

value of (dP) used by Raytheon is not reported.)

1f |
(ap)* - ET [Iw] -1 ¥ 20 (14)

Then
dg=9

Should the indicated difference be less than zero,

ap (dP) v (15)

T -1
¥ [Iw,] ¥

The change in n to be made for the next trial run is determined from the
following expression:

dny 1 (dP)% - de [I ]'1 ap
I P N {A‘X . -1£} — W_ P
n d:j v Ll e yp" Lyg (%] L,

AN
Then

d 17
l’]-new=ﬂ01d +__Tl (17)




The process outlined above is repeated using the new values of nl, nZ,
and h

and n £ £

until u, s, and h converge to the desired final values u_, s

3
while tn is minimized, thus producing an optimum trajectory.

f’

1.3 Typical Optimum Trajectory Characteristics

Figures 2 through 6 illustrate some characteristics of the class of trajec-
tories obtained by the preceding optimization technique.

Figure 2 illustrates two optimum pitch programs developed for two
sets of inputs. The input quantities and the resulting pitch program equations
are included in the figure.

Figures 3 and 4 show typical X-Y profiles of the trajectories genera-
ted. Input conditions are summarized in the figures.,

Figure 5 illustrates the line-of-sight angular rate (,(), ) as a function of
time for trajectories corresponding to three sets of input conditions.

Figure 6 shows the characteristic velocity, AV, required for an optimum
descent from periselenum of a synchronous approach orbit, Other pertinent
parameters are summarized in the figure.

T ] I
INPUT_CONDITIONS
210 —
I PR (1) .
hot 15.25 &km mo = 31,100 KG
Vor 1744 m/SEC Isp: 420 SEC
200 THRUST LEVEL: 133 500 NEW —
2 FOR M2 (1)
ho = 38.1 km mg * 31100 kg
o N Vo 1723 m/SEC Lgp: 420 SEC
190 THRUST LEVEL *133.500 NEW
:; \
w
w N \
x 180 - . r
2 N \ OPTIMUM PITCH PROGRAM
& \ 7 * 186.6 -0.090271-1.89x10°512
€ o \ ng 200.4-017111 4 1.19%10512
3 \
(<] \
Zz
<
160
z N ~J
=
a \
150
140
0 50 100 150 200 250 300 350 400
TIME AFTER THRUST INITIATION, t (SECONDS)
I17SOE-VB-129
Figure 2. Typical Optimum Pitch Programs
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20 INITIAL_CONDITIONS
ho= 15.25 KM
Vo = 1744 M/SEC
s Mo: 31,100 KG
Isp‘ 420 SEC
THRUST LEVEL =133,500 NEW.
0 z ]
NOTE:
X AND Y FORM AN INERTIAL
/\ COORDINATE SYSTEM CENTERED
A NG AT THE LANDING SITE, WITH
~ 5 Y ALONG LANDING SITE -
e \ LOCAL VERTICAL
W
—
g AN
o o
-
: AN
N \
_—5
-10 X
N
-15
50 100 150 200 250 300 350 400
X ( KILOMETERS )
1790E-vB-130
Figure 3. Typical Landing Trajectory Profile
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35
INITIAL CONDITIONS
ho=38.1 KM
Vo= 1723 M/SEC
0 mg= 31,100 KG
Iy 420 SEC
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2. LINE OR PREDICTIVE GUIDANCE

2.1 Navigation Equations

This subsection derives expressions for the state variables h, 6, y, and
V in terms of the quantities observed by the two navigation concepts, beacon
tracking and doppler navigation. The beacon trackmg observables are line-
of-sight range, angle, and their time derivatives (R, R, ¢, ¢) measured to a
beacon located at the nominal landing site. The second navigation concept
observes altitude (h), line-gf-si‘ght angle to the landing site (¢), and range rate
in three known directions (R,, R_, and R_). Since a two-dimensional
problem is assumed, the range rate observations are assumed to be made in
such directions that R, and R, are always equal. Thus the doppler navigation
observables are h, ¢, R1 an R2

2.1.1 Beacon Tracking Navigation Equations

Figure 7 illustrates the geometrical situation existing for the descent phase.
The symbols that will be used are defined as follows:

y = the angle between the velocity vector and the local horizontal plane
measured in the plane of motion (flightpath angle)

h = altitude of vehicle above a reference lunar sphere of radius T

= the angular displacement of the vehicle from the landing site in

moon=-centered coordinates (measured in the plane of motion)

V = magnitude of space vehicle velocity vectory

R = line-of-sight range from vehicle to landing site

1.1 = time derivative of R

¢ = angle between local vertical and the line of sight to the landing site

(;S = time derivative of ¢

r = radius of moon at landing site

The landing site is allowed to be in the plane formed by the velocity vector
and local vertical.

To derive expressions relating the state variables h, B, vy, and V to the radar

gbservables R, R, ¢, and ¢, proceed as follows. The known quantities are R,
R, ¢, d) and r . The angle 6 can be computed by applying the law of sines to
triangle AOB,

sin 6§ _ sin ¢
R  r
c
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-1 i
8 = sin —R :lnd) (18)
c
Then the quantity h is available from the law of sines.
r +h r
c _ ¢
sin[n' - (o4 6)] ~ sin ¢
r sin (¢+ 0)
r +h= < -
c sin ¢
r. [sin ¢ cos 8 + cos ¢ sin 6]
h = n - T
sin ¢ c
2
h=Rcos¢+[rC - R2 sin2 ¢]1/2-rc (19)

Functions relating vy and V to the observables are most conveniently de-
rived through vector analysis. Inthe following analysis an underlined
quantity refers to a vector, and the quantity is the vector magnitude. For
example, V is the velocity vector and V = izl

D-14a/D-14b
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The following definitions refer to figure 8:

A = A vector from point O to A

B = A vector from point O to B

R = A vector from point B to point A

V = the velocity of point B

In vector notation,

R=A-3B (20)
and

R=A-3B (21)
Since é is a constant vector, é is zero, and

R=:B=-V (22)
Vector differentiation results in the expression:

i_{ :li—l: % + wx R (23)

R/R is a unit vector in the direction of R.

The vector w is perpendicular to the plane formed by A and R and equal
in magnitude to ﬁ For the geometry of figure 8, « is positive toward the
reader. The quantity w x R is perpendicular to R and in the plane formed by
A and R. The positive senses of all vector quantities are illustrated in

figure 8. The following statements can be made.

dR/dt = R = an observable

1]
=)
]
-©-
+
2

p
w:é:—c'b—é

where ¢ is an observable, and 6 as a function of observables can be obtained
by differentiation of the expression obtained earlier for 6.
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Figure 8. Vector Diagram of Landing Maneuver



-1
6 = sin [?R— sin ¢:|

C

de R<.1>cos¢ i{sinq)

[

dat ~ 1/2
[rcz - R2 sinzd%

Therefore, if

w| 1w

R=R + wx R

then

2

v )

) ZJ 1/2

v =[(1i)2+ R (b +6)

(R)% + R (¢ + 0

and

-1
tan ¢ = tan[- tan <(—'OB :\: - -(—*)—E—{
R R

R(£b+é)
R

tan § =

From figure 8 it can be shown that:

¢+ ¢-vy=m1/2
y=¢+ y- m/2
Y=¢-g+tan_1 [

The four resulting transformation equations are:

stin-l[E sin ci)]
r
c
1
2 2 .2 /2
h=Rcos<1>+rC - R sin ¢ -r
D-18
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0-F 4|10 ]

‘Y:
R
. R
v:[un+a?(¢+m1 (27)
where

. R¢cos¢+f{sin¢
6 = 73
[rcz - R2 sin2 <1>:|

The term 6 appearing in the expressions for Y and V appreciably compli-
cates the partial derivative equations required for the linearized error
analysis. However, over the range of parameter values covered by the

landing maneuver, 6 is very much smaller than ¢ so that the approximation

¢+ 6 = ¢is very accurate. The equations from which the partial derivatives
were derived are then:

e=sin'1|:5 sin ¢:|
r
c
2 2 .2 1/2
h=Rcos ¢ +|r - R sin ¢ -r
c c
Y =

: ¢-g+tan-1[R—.¢j|
R

. . 11/2
v;%m2+m@1

(28)
The resulting partial derivative expressions which are used in the
analysis are:
h R si 2¢
93 =cos ¢ - sin
0 2 2 _2.17°
r - R sin ¢}
c
ab sin ¢
oORr 2 2 2 Y2
r - R sin” ¢
c
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2.1.2 Doppler Navigation Equations

a. Description of the Observation Scheme. - The doppler navigation
combination of observables consists of altitude, line-of-sight angle to the
landing site, and range rate to the surface in each of three directions. For
ease of visualization, the devices producing this information can be thought
of as an altimeter, some sort of optical device, and a three-beam doppler
radar system. (Knowledge of local vertical is assumed.) The altimeter de-
termines altitude, and the three-beam doppler radar provides sufficient
information to allow calculation of V and Y. All parameters pertinent to
discussion of the three-beam doppler radar are illustrated and defined in
figure 9. The antenna system for this analysis is assumed to be gimbaled
and controlled so that the beam pattern remains fixed with respect to the
coordinate system, X, Y, Z. This is done by controlling the direction
vector OP so that it is always along local vertical. (Errors is establishing
local vertical can be lumped with range rate measurement errors.) The
vehicle pitch axis (X') and the X axis are allowed to be coincident. Since the
two-dimensional trajectory is assumed, they will remain coincident through-
out the landing maneuver.

Several parameters of the system are known prior to landing:

+ The angles Al’ AZ’ and { which define the geometrical properties of
the beam pattern
+ The vector OP is along local vertical.

- The vector OA is in the Y' - Z' plane. (For a two dimensional
analysis, OA is also in the Y - Z plane.)

The three observable quantities are:

0.
1

1 Vehicle range rate to the surface along vector OA
R2 = Vehicle range rate to the surface along vector OB
R3 = Vehicle range rate to the surface along vector OC
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By allowing the Y-Z and Y' - Z' planes to be coincident, the vector OA is in
the plane of motion with the result that the observables R_ and R are always

2 3
equal. Therefore only one of these quantities must actually be observed.
Thus the set of observables when the trajectory is restricted to two dimen-
sions is: h, ¢, Rl’ andR

b. Doppler Navigation Equations. - Three sets of relationships are
required by the digital error analysis program. First, the observables
themselves must be defined in terms of the state variables; second, the
state variables must be defined in terms of the observables. Finally a
matrix of partial derivatives, [G], where gij is the partial derivative of

t .
the ith state variable with respect to the j  observable quantity, must be
formed.

The following statements and constraints facilitate definition of these
quantities (see figure 9 for definition of terms).

+ The anglesAl,A >’ and { are known,
* Vector OA is in the Y' - Z' plane.

* Vector OP is in the direction of local vertical.

* The landing trajectory is two-dimensional, all motion being in the
Y-Z plane.

+ The X and X' axes are coincident.

With these restrictions, the expressions for state variables in terms of
observables are:

h="h
r +h
T -1 "¢ .
e=—2--¢-cos [ = s1n¢]
. c .
-1 R2 sin A2 - R1 cos { s1nA1
Y = tan

R1 cos A1 - R2 cos A2
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. . . . 1/2
R1 [(R1 cos A1 —RZ cos AZ)2 + (RZ sinAz-Rlcos ¢ sin ./LI)Z]

= . : . (29)
cos AZ [fz smA2 - Rl cos { sin Al] + 51nAZ [Rl cosAl - RZ cos AZ]
Conversely, the expressions which define observables in terms of state
variables are:
h=n~h
-1 rc sin 6 (30)
¢ = sin 2 2 1/2
[r +(r +h) -2r (r +h)cose]
c c c ¢

R;= V [sm Y cos A2 + cos y sin AZ]

R=V [cos ycosLsin A + siny cosAl]

The expressions for the matrix, [G] , of partial derivatives are derived
from equations 29. The subscripti refers to state variables as follows:

i=1-=h
i=2-6
i=3—=Y
i=4-V

Similarly, observables quantities are denoted by the subscript j:

j=1l-=h

J = 2—.R1
j = 3 —-¢
J = 4_°R2

Equations defining the elements of [G] in terms of the observables are:

:ﬂ_l
€11 *3n ~
= oh _
oR,
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42

QD
o x

= —— =0
d¢
_oh
_ 98 coso
=9h T T 2 2 1
d [rc - (rC + h) sin2 4)] /2
=98 4
IR,
:0_9__1+ (rc+h)cos¢
L z _ 1/2
[rc (rc+h) s1n ¢
_ 06
= g—R =0
2
= 9Y _
= by =0
-R CosA sinA - cos { si A
_ oy _ 2[ ¢ sin cos AZ]
aRl [Rl cosAl-R cos A ] [R sin A -Rlcos gsinAl_“IZ
- aY
= —= =0
o
, ﬂ_ Rl cosA s1nA - cos { sin A cosAZ]
- - . 2 . 2
R _ . _ .
0 > [Rl cosA1 R2 cosAz] +[R2 smA‘2 R1 cosgsmAl]
- 0V _
= 3% 0
av ill [cos2 A1 + cosZ L sinZAl ] -.R2 [cos Al cos A2 - cos { sin Al sin AZ]
R = Tcos A, sin A_ - cos { sin A cos A_T¢. . . . 1/2
8R1 [ 1 2 2 2]@11 cos Al - R2 cos AZ)Z +(RZ sin A2 - R1 cos { sin AI)Z]
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<

111
1
o

RZ - R1 [cos Al cos A2 + cos { sin A1 sin AZ]

oV
BRZ [cos A1 sin AZ - cos { sin A2 cos AZ] [(R1 cos Al - e
z] 1/2

€44

N 2 . . . i
- RZ cos AZ) + (.R2 sin AZ - R1 cos ¢ sin Al)

2.2 Gravity Turn Nominal Trajectory

2.2.1 Trajectory Determination Program

Knowledge of reference trajectory parameters is required to perform the
error analysis of the linear predictive guidance concept. Therefore a
computer program was developed to yield the necessary information. The
basic method is to provide the computer with sufficient information to specify
one and only one constant-thrust gravity turn trajectory and then let the
computer determine exactly with trajectory it is.

The input information consists of specification of the nominal initial
altitude ho’ initial velocity Vo, initial flightpath angle Yo initial mass m

fuel specific impulse Is , nominal terminal altitude hf, and nominal terminal

velocity Vf. In addition, the fact that a gravity turn trajectory is to be flown
is programmed. The initial value of 8 is set equal to zero. Thus a complete
set of initial state variables is specified, and two desired terminal condi-
tions are known. In addition the applicable equations of motion are known:

h

= V siny
6 = -r h cos Y
. Vecosy T sina B COS y (31)
Y% "r th mvV_ 2
c V(rc+h)
_\'f - Tcosa  psiny
m (r +h)2
c
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where
t'
m = m +f m dt
© o)

The constant-thrust gravity turn trajectory specification means that the
angle a is zero, that the magnitude of the thrust vector (T) is constant at

its initial value (T ), and that m is a constant. If these facts are substituted
into equations 31, the modified equations of motion given below result.

}.1 =Vsiny
6 = T Im cos y
c
. V cos y L COS Y
Y = h 2
rc+ V(r + h)
c
. T .
- [o) _ p.51ny
0 2
ot (x_th) (32)

Given the initial condition data above and an assumed value for To, the

equations of motion are numerically integrated until the velocity is equal to
the nominal terminal value. At this time the existing value of h is compared
to the desired value hf. If h is greater than hf, the value of T0 is reduced
by a small amount for the next trial and vice versa. When the terminal
values of V and h are within prescribed error limits of the desired values

Vf and hf, the nominal trajectory has been determined. (The error limits used

are 0.1 meters per secondin velocityand 1 meter in altitude.) The following
quantities which completely described the nominal trajectory are then available:

- Initial values of all state variables, control quantities, and the initial
mass

« State variables as functions of time along the trajectory

- Complete set of terminal conditions including the nominal flight time, tf
One notes that the initial value of 6 is arbitrarily set equal to zero above.
This is not consistent with definition of 6 given in paragraph 4.3.1.1.a of
Volume III, where 6 equal to zero is seen to correspond to the landing site
and not to the point of trajectory initiation. This switch in the reference
point for 0 is permissible because the quantity 6 does not appear in the
equations of motion. To obtain the value of 60 in the coordinate system



referenced to the landing site, the quantity (6, - 6 ) computed by the
trajectory determination program is subtracted from zero (the arbitrarily
assumed initial value of 6). For example, if the computed value of 0, is

-0. 1 radian, the nominal initial value of 6 in the coordinate system indicated
in paragraph 4.3. 1. la of Volume III is +0.1 radian and the nominal terminal
value is zero. All values of 6 presented in the following subsection of this
appendix are referenced to the landing site.

Nominal trajectories are determined for 8 sets of input information as
summarized in table 1.

Values of constants used in the program are:

r = mean lunar radius = 1738 km
c
, . 12 3
M = lunar gravitational constant = 4. 89820 x 10 m”~ /sec
g, = earth's gravitational attraction (at earth's surface) = 9.80665
m/sec

2.2.2 Nominal Trajectory Characteristics

The material presented herein summarizes the geometrical and fuel
consumption characteristics of the constant-thrust gravity-turn family of
trajectories determined by the previously discussed computer program.
Geometrical data is given in table 2 and in figures 10 through 18, the contents
of which are summarized below.

Table 2: Nominal values of initial thrust level, T ; initial thrust-to-mass
ratio, To/mo; initial angular displacement from the landing site, 60;
initial velocity, V ; nominal flight time, t

, corresponding to the selected
values of initial al%itude, h
o

f

Figure 10: Plots of initial thrust level, TO, and initial thrust-to-mass
ratio, To/mo, versus initial altitude, ho

Figure 11: Plot of initial angular displacement from the landing site,
60, versus initial altitude, hO

Figure 12: Plot of total flight time, t_, versus initial altitude, ho

f

Figure 13: Plots of altitude, h, versus time after thrust initiation,
t, for the selected values of initial altitude, h
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Figure 14: Plots of angular displacement from the landing site, 6, versus
time after thrust initiation, t, for the selected values of initial altitude, h
o

Figure 15: Plots of flightpath angle,y, versus time after thrust initiation,
t, for the selected values of initial altitude, hO

Figure 16: Plots of velocity, V, versus time after thrust initiation, t,
for the selected values of initial altitude, h
o

Figure 17: Plots altitude rate, h, versus altitude, h, for the selected

values of initial altitude, h
o

Figure 18: Plots of altitude, h, versus angular displacement from the
landing site, 6, for the selected values of initial altitude, ho

TABLE 2

VALUES OF COMPUTED NOMINAL TRAJECTORY PARAMETERS

h_ T, T /m_ 0, v, t
(km) (newtons) (m/sec 2) (rad) (m/sec) (sec)
10 68406 6.032 0.1269 1753. 6 238.9
15 55644 4.907 0.1553 1749.0 296.0
20 48212 4,251 0.1783 1744.5 344.3
25 43216 3.811 0.1979 1739.9 387.0
30 39564 3.489 0.2151 1735.4 426.0
40 34494 3.042 0.2442 1726.4 495.8
50 31074 2.740 0.2683 1717.5 558.4
60 28570 2.519 0.2888 1708. 6 615.9
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The nominal trajectory is restricted to a constant thrust level. This as-
sumption makes determination of nominal fuel consumption parameters an
easy task. Two quantities related to fuel consumption can be computed.
These are AV, which is defined in equation 33, and mp, defined in equation
34. Quantity m_ is the mass of propellent consumed during the landing
maneuver, Thus, m,, is a truer measure of fuel consumption than is AV,

The definitions of AV and m,, are

p
't
_ T(t) ,
AV = Of () dt (33)
tf
m_ = ‘f %?— dt (m = total vehicle mass) (34)
P 0

Since the mass rate of flow is constant (constant thrust), the expressions
for AV and myp, are integrable in closed form,

-T

dm 0
—=k= (35)
dt Isp g6
Isp = fuel specific impulse = 400 sec
g, = gravitational acceleration at earth's surface = 9,80665 m/sec2
t
f To
AV = f — dt (36)
0 m + kt
mO + ktf
= -1 g In (37)
sp “o m
o
To tf
m -
. spgo
. AV = Isp 80 In — (38)
o
t
f
m = - f kdt = - kt
p 0 f
T t (39)
=0 f
) "I
P spgo
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The quantity m /mO is the nominal fraction of initial landing vehicle mass

that is consumed during the landing maneuver. Figure 19 illustrates the
variation of nominal AV requirements with the initial altitude of the trajec-
tory. Figure 20 contains plots of my, and m /m versus h . All the quan-
tities required to produce these curves are contamed in table 2 with the
exception of m,, which is constant at 11340 kilograms.

As expected, fuel consumption parameters increase as h, increases.
Perhaps the most important piece of information contained 1n these plots is
the relative sensitivity of AV and m_ to changes in h,. If hj is increased,
the fractional increase in m_ is less than the fractional 1ncrease in AV.

Thus, if AV is used as a measure of fuel consumption, pessimistic results
will be obtained. Whenever a significant fraction of the total vehicle mass

is consumed during a thrusting maneuver, the quantity AV is no longer an
accurate measure of fuel consumption, and the parameter my, should be used.

3. MODIFIED PROPORTIONAL NAVIGATION GUIDANCE LAW

3.1 Modified Proportional Navigation Guidance Digital Simulation

This program is written to simulate the trajectory and the guidance sys-
tem of a vehicle attempting to make a soft lunar landing using a modified
form of proportional navigation.

The vehicle is assumed to be moving in a central force field influenced
only by lunar gravity and vehicle thrust. The most general form of the
guidance law employed causes the vehicle to fly initially toward a fictitious
target Y . meters directly above the desiredlanding site, as shown in
figure 2I. When the relative range to the fictitious target, R ., is less than
R¢, an arbitrary constant, guidance system parameters change, and the
vehicle is made to proceed toward the desired landing site. This general
form is seen to be the MPN/VT-B guidance concept described in
paragraph 4.3,2, 1b of Volume III,

3.1.1 Coordinate Systems and Equations of Motion

The equations of motion are written in a target-centered inertial car-
tesian coordinate system. The Y-axis is positive upward along the landing
site vertical, the X-axis is along the horizontal and is positive toward the
landing vehicle, and the Z-axis completes the right-handed system. The
equations of motion are:
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In
X=-—X
3 + a
r
Y:-L(Y+r)+a (40)
3 C
r
: p
= -— 7 a
z 3 * z
r
where
X, Y, Z = coordinates of the vehicle's position
X, Y, Z = vehicle accelerations in the X, Y, Z directions
#  =lunar gravitational constant
T = distance from the center of the moon to the vehicle
r. = radius of the moon at the desired landing site (taken to be

the mean lunar radius)

ax, a , aZ vehicle thrust accelerations in the X, Y, Z directions

The set of equations 40 are integrated numerically to obtain the vehicle's
motion.

Let XB, YB, ZB represent a second cartesian coordinate system corre-
sponding to the roll, yaw, and pitch axes of the landing vehicle respectively.
An attitude control system, identical to that described in Appendix B of
Volume IV, roll-rate stabilizes the vehicle while maintaining the XB axis
along the line of sight to the target. In a two-dimensional situation, the YB
axis is maintained in the plane of line-of-sight rotation. The guidance

equations determine the command accelerations in the XB, YB, and ZB
directions. These accelerations are then resolved into the X, Y, and Z
directions by means of an Euler transformation.

3.1.2 Guidance Equations

When the range to the fictitious target is estimated to be greater than Rt’

the command accelerations are given by
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N [K-l (Ry) A A ] A
a, =-|l"g A +gmcos(§2+ﬁ) cos f3
B R
1
K-1"% A A Ay A
-[-(S+-——K—-)R1£2+gmsm(s2+ﬁ)] sin

(41)

A, |
A [&-1) (&) A A A
a = - R ~ +gmcos(Q+[3) sin B
B R '
1
K-1 /A A N A A

+[-(S+ K)RIQ.l+gms1n(Q+ﬁ)] cos B

’a\tz = 0 (for two-dimensional motion)
B

where the symbol N\ denotes an observed quantity or a quantity computed from
observed data, and

A . . . .
ya 5, a = command accelerations in body axis coordinates

K, S = guidance parameters

g, = lunar surface acceleration of gravity

A

B = estimated value of B (see figure 21) which is

A

A -1 YH sin

B = sin —_—
R

1

/g\z = observed value of  and is given by the following
expression in the digital simulation:
0+ 2, + (gp,) (Tos)
A t o-0+92, + (gp) (55
9 - f b b" " 100 dt
0 Ta
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b =a bias error in the observation of §.
Q = actual angle between the Y axis and the line of sight
Q,pb = a scale factor error in the observation of Q
Tq = a time lag in the observation of
R1 = estimated value of Rl’ given by
A 2 N2 a A ]1/2
R =[v; +R°-2Y, Reos
YH = altitude of the fictitious target above the desired landing
point
A
R = observed value of R represented by
t A R
R -R+R+H_p,) ==
A
o _é' bT RPp’ 100 .
R
R = the actual range to the desired landing point:
2 211/2
R = [ X‘Z +Y + 2 ] /
Rb = a bias error in the observation of R
RPh = a scale factor error in the observation of R
TR =a time lag in the observation of R
A .
R1 = estimated value of R1 given by
A A A NA A
R1 =R cosp + R ( sinp
A .
R = observed value of R represented by
. A :
t - . R
A R-R+R +('p.) (==7)
R = f b R'b 100 dt
0 TR



A
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actual value of the range rate to the desired landing site
a bias error in the observation of R

a scale factor error in the observation of R

a time lag in the observation of i{

observed value of§2, represented by

()
100

1l
o Y «

[e—
5>~

1

]

T

Q

actual value of the line-of-sight rotation rate
a bias error in the observation of

a scale factor error in the observation of Q,

a time lag in the measurement of Q

estimated value of .(.Zl (see figure 21) given by

A A A A A
(- R sinf + R & cos p)|

When the range to the fictitious target is less than Rt’ the guidance

equations become

K -1)% 2

v [ )(R)]
R A S
*B ¥l R
A
A A 52 A
2 =-[isQ_sz(% sz]
B R (42)
A . . .
a = 0 (for two-dimensional motion)
B

where Kl’ Sl’ and S2 are guidance parameters and the remaining quantities

are previously defined.




The thrust required to provide the command accelerations is

t
1/2
. A A 2 A 2
Tp = [mg+ [ at] (3 124 (@, )5+ (R ) ] (43)
o Xp Yp B
0
where
TR = required thrust vector magnitude
m = initial mass of the vehicle
. -T
m = rate of mass flow = i
o sp
T = actual vehicle thrust vector magnitude
g, = gravitational acceleration at the earth's surface
Isp = fuel specific impulse
IfT . <T_<T » the vehicle thrust is set equal to T_ and the
min R max R
vehicle body accelerations. a_ , a , and a are set equal to the command

*B Yp B

accelerations. If the required thrust is less than Tmin’ the problem stops.

When TR

exceeds T
max

» the thrust vector magnitude is set equal to T

b

and the actual accelerations are then

where

max

max
Amax sin 62 cos 61
A cos §
max 2
Amax sin 62 sin 61 (44)
T
max
tre .
mo +/m dt
0
D-49
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*B B “B

By proper selection of parametei's YH, R, S5 K, S,,S,, andK, a

t’ 1" 2 1
large number of different combinations of landing points and guidance
laws can be obtained. For example, setting

YH = 0.0

Rt = 0.0

S = any desired value

K = any desired value

Sl’ SZ’ Kl = 0.0 (they have no effect)

causes the vehicle to proceed directly to the landing site using modified
proportional navigation guidance (MPN). Changing Y to some positive
value causes the vehicle to proceed to a hover point directly over the
desired landing site. By setting S1 =S+ K-1 S2 = 0.0, Rt equal to some

positive value, and Y__ to some positive value MPN is flown throughout

H
descent, the vehicle flying first toward the hover point and then, when
R. < Ry, toward the desired landing point. As another alternative ,
the vehicle can be made to fly the MPN/VT guidance law all the way by
setting Rt to be greater than the initial range.

3.2 A Modified Proportional Navigation Guidance System with a Vertical
Landing Velocity Constraint

A modified form of proportional navigation (MPN) for use with a
terminal lunar landing guidance system has been proposed by Kriegsman

2/

and Reiss,—

2/

This guidance system yields a rather shallow approach to

B.A. Kriegsman and M. H, Reiss, "Terminal Guidance and Control Tech-~
niques for Soft Lunar Landing, ' ARS Journal, Volume 32 (March 1962),
pp. 401 - 413,




the desired landing area and a nonvertical touchdown, The guidance technique
described herein, which is a modified version of MPN, constrains the

vehicle to land from a vertical direction, It has been named '"Modified
Proportional Navigation/VerticaI Touchdown'' (MPN/VT).

3.2.1 Derivation of Guidance Equations

Let X and Y represent the axes of a coordinate system centered at the
desired landing point on a flat moon, Let R and {l be the polar coordinates
of a vehicle attempting to soft-land at the origin from a vertical direction.
From figure 22,

fY

LANDING
SITE
X
1750E-VA-135
Figure 22. Reference Coordinate System

R = -V cos Y (45)
R =V siny (46)
§-Q =w (47)

v
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where
v = magnitude of the velocity vector
b = angle between the velocity and range vectors
w, = angular rotation rate of the velocity vector

From equations 45 and 46,
RQ
tan Y=~ —m—
P R , (48)

Differentiation yields

thecqu __R (Rsz+.1zsz) - RQR (49)
R
: 2 IR @ : RR
b = -cos LIJ[—R— +Q(l-—.——2):l (50)
(R)

An equidimensional differential equation results if the following assump-
tions are made:

. R
- - Q = Q
@, s, 2+8, ¢ (51)
2
- . (R)
- Q - =
a S, R 5, =0 (52)
K. -1 2
.o l (R
a = R 2 e A 53
R K R (>2)
1
K K -1 KR
R 1 R
= SR ;T=1_ti_;tf=.o (54)3/
fe) R f R
o (8]

— The expressions of equation 54 are taken from the approximate closed-

form solutions to the nonlinear differential equations of motion developed

in Appendix C of Volume IV.
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where

Sl’ SZ’ and Kl = guidance parameters

ag = command acceleration normal to the line-of-sight range
vector

ap = command acceleration along the line-of-sight range
vector

T = normalized time to go

tf = the nominal time of flight

Ro and Ro = the initial values of R and R

Substituting equations 53 and 54 into 50 yields

R .
. 2 .
b= - cos” y| =2 T4 (55)
R 1
o
From equations 47, 51, and 55 the following expression is obtained
R 2 R
2 . .
(cos® ) =2 72 g+ |(1-5)+2 ¥l 6,5 2@ =0 (56)
. 1 K 2 R
Ro 1 o

Making use of equation 54,

¢ . 2 . S.K
(cos®y) - PO |(1esye S Y | Lo 2 1o (57)
K, 7K t

and Q can be written as:

dQ _de dr 1 d@ _-&

[+
where Q is defined to be —T:

Similarly Q can be shown to be:

00

2
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where
o0 dZ Q
Q = 3
dT

Substituting these two expressions into equation 57 and simultaneously
Kl t

multiplying both sides by the expression - £ yields the following
cos Y
equidimensional equation:
2
72§f+K[lsl +LJ~+?-2K—1—Q=0 (58)
1 2 K T8 2
cos Y 1 cos Y

If the angle § is small, as it is during the final portion of the landing

. 2., .
maneuver where MPN/VT guidance is to be used, the quantity cos  is
approximately equal to unity and equation 58 is approximately

200 o 2
T Q+[1+K1(1-sl):|-rs2+sleﬂ=o (59)

This equation is recognized to be in the form of Euler's differential equation-‘-l-
for which the solution is known. This solution has the form

3 2
Q(1)=C; 1  +C,7 (60)

where C1 and CZ are constants of ihtegration and a, and a, are given by

1/2
_<___>[<__> | 6
(5,-1

If a1 = az, the solution to equation 59 has a different form:

!
Q(t)= 7T (C1+C21n'r) (62)

i/ C.R. Wylie, Advanced Engineering Mathamatics, New York:McGraw-Hill

Book Company, Inc., 1956, p. 282.




This form is an outgrowth of the requirement to maintain two independent
constants of integration when the roots of the characteristic equation of a
second order linear homogeneous differential equation with constant coef-
ficients are equal.é

If at1 and a‘2 are to be real and distinct, then:

2
4s, (8, -1)

> < 1; or SZ< — (63)

(5,-1)

If in addition it is desired to have zero range rate at zero range in a free

space environment, the value of K1 must be greater than 2. A lower bound

on the permissible value of S2 can be obtained by requiring the normal

acceleration given by expressions 64 to be finite at T equal zero.

R - R ©
a (r)=—Q -2=—
Q th tf

Ro Kl (a, -2) (aZ-Z)
- —— T - -
=— [Clal (2, -7 +G,a, (a,-1)7 ] (64)
t
f
. (K1 -1)
Z.RoT (aL1 -1) (az-l)
3 £ [ Cpa; 7 tCya, T ]
f
This condition is satisfied if
-2>
K1 + a1 2 0
and
-2 >
Kl + a2 2>0 (65)

5/

— J.H. Lanning and R.H. Battin, Random Processes in Automatic Control,
New York: McGraw-Hill Book Company, 1956,




or since K1 is already selected to be greater than 2, a. >0, a_ > 0. In

1 2
addition it is desired that 2 and € be finite at T equals zero. Examination of
expression 60 shows that this requirement further restricts the permissible

values of a, and a,. Specifically, a, > 1 and a, > 1. These restrictions on

a and a, determine a lower bound on the permissible value of S_ in the form

K. (S, -1) -1
5. > — 12 (66)

Ky

The lower bound of S2 is plotted versus S1 in figure 23 with K1 as a param-

eter.
4
40 |- UPPER BOUNDARY
FOR Sy
30 -
S2
20 -
k=2 LOWER
BOUNDARIES
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=3
Lo —
o —
o 5.0
1750E-VA-136
Figure 23. Admissible Values for Guidance Parameters
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Equations 54 and 60 describe the motion of the spacecraft as a function of
normalized time-to-go when the vehicle's engines provide the accelerations

given by equations 52 and 53; the guidance parameters Sl’ SZ’ and Kl

are within the bounds defined by expressions 63 and 66; and K_ is re-
. 1
stricted to values greater than 2,

The assumptions made in arriving at the guidance law and its analytical
solution require that the relative range to the desired touchdown point, and
the range rate be small. Therefore the results are useful only for the final
flareout and letdown maneuver of the lunar landing.

3.2.2 Evaluation of Guidance Technique

The MPN/VT guidance law defined by the acceleration commands of
equations 52 and 53 is evaluated by means of the digital simulation program
discussed in subsection 3.1. The equations of motion of a body moving in a
central force field are written in the cartesian X, Y, Z coordinate system
centered at the desired landing point on a spherical, nonrotating homogeneous
moon. The Y axis is vertical and the X axis horizontal in the vehicle plane of
motion (two-dimensional analysis) and positive toward the vehicle.

A comparison between the analytic solution represented by equations 54,
60, and 62 and the more exact digital computer solution is presented in
figures 24 through 27. The variables Rl’ Rl’ 2, and -g%are plotted as
functions of normalized time-to-go,T. In each case the maximum error
occurs in midflight and is as much as 15 percent for Rl’ Rl’ and 2, while

. d .
the maximum error is about 30 percent for T Guidance parameter values
used for this comparison are

K1=Z
S1 =2

= 0.
S2 25

The discrepancies noted above are attributed to the effects of gravity and
to errors introduced by linearizing the control law to obtain an analytical
solution.

3.3 Lunar Landing Tradeoffs and System Design

This subsection illustrates the methods used and the tradeoffs performed
in determining parameters such as spacecraft thrust-to-mass ratio,
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Figure 24. Comparison of Analytical and Computer Results

periselenum altitude, guidance techniques, simplicity, and acceptable sensor
random and bias errors. Subsection 4.2 in Volume III, indicates the mission
constraints and assumptions used and subsection 3.1 of this appendix explains

the analysis techniques used in obtaining most of the data presented in this
section.

The performance of the lunar landing guidance system will be measured
in terms of payload mass and the ability of the guidance system to deliver
the payload to a preselected point on the lunar surface without damage. As
the guidance system and sensor requirements are evolved, numerous trade-
offs must be performed and constraints imposed. This subsection will
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explore the tradeoffs which exist while imposing typical mission profiles and
state of the art constraints.

As discussed in subsection 4.2 of volume III, a synchronous transfer
ellipse is presently planned for the Apolio mission as the intermediate trans-
fer orbit from the deorbit point to periselenum. Although the use of a
synchronous transfer ellipse will result in an overall mission fuel penalty of



approximately 120 meters per second LY in comparison with a Hohmann
transfer ellipse, as shown in figure 28, the synchronous transfer ellipse
has been chosen for the purpose of this study. This choice will incur a net
payload penalty of approximately 590 kilograms but will not create any sign-
ificant difference in the terminal landing trajectory. Consequently the
landing guidance methods developéd in paragraph 3.3.1 will be suitable for
either a synchronous transfer orbit or a Hohmann transfer orbit.

As previously discussed, the deboost maneuver is assumed to com-
mence when the transfer orbit reaches periselenum. The term initial

thrust-to-mass ratio, (T/m)o, is used to indicate the ratio of spacecraft

s
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Figure 28. Characteristic Velocity Required for Landing
vs Periselenum Altitude

6/

— Fuel penalties are often discussed in terms of incremental velocity
penalties (AV).
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thrust level to spacecraft mass at the commencement of the deboost maneuver.

3.3.1 Assumptions

The requirement that the landing site be visible at the start of the landing
maneuver (periselenum) is imposed. For the purpose of this phase of the
study, the characteristics of the RL-10 engine are selected to represent the
class of engine which is to be available in the 1967 time period. Typical
engine characteristics are given below:

Thrust level 66, 765 newtons (15, 000 1b)
Weight 136.5 kg (300 1b)
Throttling range 10:1

According to paragraph 4.3.2.1d of Volume III, the spacecraft mass at
periselenum will be 31, 100 kilograms. For reference purposes initial
thrust-to-mass ratios for spacecraft configuration employing one, two, and
three RL-10's are given in table 3.

TABLE 3

THRUST TO MASS RATIO

Initial Thrust-to-
Number of Mass Ratio (T/m)
RL-10 Engines nfeendy o
(m/sec®)
1 2.15
2 4.30
3 6.45

The spacecraft will be required to perform a soft pinpoint landing at a
preassigned point.

3.3.2 Determination of Is

The effect of fuel specific impulse, Isp’ upon touchdown mass (gross

spacecraft mass at the landing point) is shown in figure 29. Since a state of
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the art constraint limits the maximum value of Isp which can be chosen, an
ISp of 420 seconds has been selected for the purposes of this study. This

choice appears to be commensurate with the most efficient fuels which will
be available in the 1967 time period. Substantially larger values of I _ are
sp

generally associated with very low-thrust engines and, in addition, are

assumed to be unavailable in the 1967 time period. The data shown in figure
29 was obtained by generating minimum fuel landing trajectories for various
values of Isp where the initial altitude is 15.25 kilometers and initial thrust-

to-mass ratio is 4. 30 meters per second per second (133, 500 newtons thrust
with an initial spacecraft mass of 31, 100 kilograms).

3.3.3 Determination of Periselenum Altitude and Thrust Level

Fuel penalty, in terms of incremental velocity, incurred by increasing
periselenum altitude is illustrated in figure 28 for the synchronous transfer.
Similar data for the Hohmann transfer is included for reference. These
curves indicate the combined deorbit and periselenum-to-touchdown velocity
increments required to perform the landing. A minimum fuel trajectory for

NOTES: i |
I. MINIMUM FUEL TRAJECTORY USED FROM PERISELENUM TO TOUCHDOWN.
2. SYNCHRONOUS APPROACH TO PERISELENUM ASSUMED
3. PERISELENUM ALTITUDE = 15.25 KM.

4. INITIAL SPACECRAFT MASS = 31,100 KG

22 —

20 /
/
18 /-/

TOUCHDOWN MASS ( THOUSANDS OF KG)

16
300 320 340 360 380 400 420
FUEL SPECIFIC IMPULSE (SEC)
1750 E - VA-142
Figure 29. Touchdown Mass vs Fuel Specific Impulse
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an initial thrust-to-mass ratio of 4.30 meters per second per second is used
to obtain the velocity increment from periselenum to touchdown. The syn-
chronous transfer curve indicates a fuel (AV) penalty of approximately 1.2
meters per second per 1000 meters increase in periselenum altitude.

Figure 30 illustrates the downrange distance (subtended central angle) to the
horizon as a function of altitude and shows the total downrange distance traveled
by the spacecraft as a function of periselenum altitude for two synchronous
transfer cases and one Hohmann transfer case. The altitude versus downrange
distance histories for the spacecraft are obtained from minimum fuel trajec-
tory results (Section 1) from periselenum to touchdown. Two synchronous
transfer cases are shown, one for (T/m)O = 4.30 meters per second per second

and the other for (T/m)o = 6.45 meters per second per second. The Hohmann
transfer is given for (T/m)o= 4.30meters per second per second. Note that

in all cases spacecraft downrange travel is relatively insensitive to periselenum
altitude. The intersection of the horizon curve and synchronous transfer
curve for (T/m)o = 4. 30 meters per second per second and occurs at an

altitude of 28.0 kilometers while the horizon curve intersection of the
synchronous transfer curve for (T/m)o - 6.45 meters per second per second

occurs at an altitude of approximately 12, 8 kilometers. These intersections
indicate minimum periselenum altitudes where the landing site is just
visible at periselenum,.

Figure 31 presents data similar to that of figure 30 except that the curve
shows the altitude at which the landing site is located on the horizon at peri-
selenum as a function of (T/m)o. Since attention here has been focused on

discrete values of (T/m)o in increments of 2. 15 meters per second per second,

this particular curve provides no additional tradeoff data but has been included
for reference purposes in the event that (T/rn)0 different from those assumed

here are of interest.
For a minimum fuel trajectory with a periselenum altitude of 15. 25 kilo-
meters, the tradeoff between (T/m)o and AV (fuel) requirements from

periselenum to touchdown is displayed in figure 32. This curve indicates that
a decrease in engine thrust level(T/m)O will increase fuel requirements. Note,

however, that only small decreases in fuel expenditure can be expected as
(T/m)o is increased beyond 4. 9 meters per second per second.
Figure 33 shows the tradeoff between (T/m)0 and total landed mass. Again,

this curve is obtained from minimum fuel trajectory results with a periselenum
altitude of 15. 25 kilometers. Here is an indication of the sensitivity of
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Figure 30. Spacecraft Altitude vs Distance to Horizon

spacecraft total touchdown mass as (T/m)O is increased. Although the curve
indicates that an increase in (T/rn)O is accompanied by an increase in total
landing mass, the increase indicated for a (T/m)o exceeding 4.9 meters per

second per second is very small, For example, a net increase in landed
mass of 45,5 kilograms is obtained when (T/m)o is increased from 4. 30 meters

per second per second (2 RL-10's) to 6.45 meters per second per second
(3 RL-10's). (Figures 32 and 33 complement one another and are in effect
different forms of the same basic data.)

Figure 32 indicates that the minimum AV requirement to perform the
landing maneuver is somewhat greater than the synchronous transfer
periselenum velocity of 1744 meters per second (at 15,25 kilometers). This
result is physically reasonable since the periselenum point of the transfer
trajectory is not tangent to the lunar surface. Hence the minimum AV
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Figure 31. Altitude at which Landing Site is Located on the Horizon at
Thrust Initiation vs Initial Thrust-to-Mass Ratio

required to achieve a soft touchdown will be somewhat greater than the
spacecraft's velocity at periselenum because the spacecraft is required to
translate from the periselenum altitude to the lunar surface.

Landed mass as a function of (T/m)o is shown in figure 34 where the

periselenum altitude is not fixed at 15. 25 kilometers, as in figure 33. The
periselenum altitude corresponding to any given (T/m)o on the curve will place

the landing site on the horizon when periselenum occurs. Consequently, this
curve indicates the combined landed mass penalty as a function of (T/m)
o

caused by two sources, the penalty incurred as (T/m)o is decreased when

periselenum altitude is held fixed and the penalty incurred by increasing the |
periselenum altitude requirement as (T/rn)0 is decreased to maintain the ‘
|

landing site on the horizon at periselenum.
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Since the predominant tradeoffs and fuel management influences have been
identified and studied, the selection of periselenum altitude and thrust level
can proceed in an orderly and objective manner. A three-way trade involving
payload (net landed) mass, thrust level, and periselenum altitude is required.
However, a constraint on minimum periselenum altitude must be considered.
Because of irregular lunar terrain, likely altitude errors at periselenum
(even if partially compensated during the coasting phase between deorbit and
periselenum arrival), and departures of the lunar body from a spherical
shape, periselenum altitude must exceed 15.25 km. Consequently, the total
net increase in landed mass arising from (T/rn)O = 6.45 meters per second

per second indicated in figure 34 cannot be completely realized in terms of
additional payload mass. Reference to exact data for a minimum fuel tra-
jectory for (T/m)O = 6.45 meters per second per second at 15,25 kilometers

indicates that the net landing weight advantage of the 3 RL-10 engine
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Figure 33. Touchdown Mass vs Initial Thrust-to~-Mass Ratio

configuration over the 2 RL-10 engine configuration(T/m)o = 4,30 meters

per second per second at periselenum of 28.0 kilometers) is 162 kg. This
landed weight advantage is achieved by employing an additional RL-10 engine
which has the following weight breakdown:

Kilograms Pounds

Engine weight = 136.5 300
Mounting Structure = 13.6 30
Fuel Lines, etc. = 4.6 10

Total | 154.7 340

This tradeoff indicates that three RL-10 engines, (T/m)o = 6.45 meters per

second per second should be used in preference to two. The minute
(7-kilogram) payload weight increase obtained with the use of 3 RL-10
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engines also suggests that a payload weight penalty will occur if a three-
engine and a four-engine configuration are compared.— Consequently, the
selection of a three-engine configuration cannot be made solely upon net pay-
load performance, particularly here where the net additional payload is for
all practical purposes negligible.

A much stronger consideration, which does not involve the tradeoff re-
lationships developed in figures 28 through 34, is the relative reliability of
the use of two or three engines. Since the mission profile requires the
vehicle to perform a soft pinpoint landing at a preselected site, the failure of
one engine to operate properly is likely to result in mission failure since all
engines must be capable of developing maximum thrust to achieve the touch-
down requirements. Since the reliability factor, (reliability of one engine)N
where N = number of engines, decreasesas the number of individual com-
ponents increases, the two-engine configuration is selected, providing a
(T/m)o = 4. 30 meters per second per second.

This choice of (T/m)o automatically determines the lower bound on peri-

selenum altitude. To provide a safety margin for altitude errors at peri-
selenum and to provide flexibility in landing in an 18-to-27-kilometer radius
around a beacon located on the horizon at periselenum, minimum periselenum
altitude is to be 33,6 kilometers. This additional altitude will result in a net
payload mass penalty of approximately 36 kilograms.

In the event that '"engine out' capability is desired, the most feasible
method for providing it seems to be to provide a third engine on the spacecraft
and maintain the thrust level required to achieve the soft touchdown pinpoint
landing at 133, 500 newtons (('I‘/m)O = 4,30 meters per second per second) as

previously chosen.
3.3.4 Selection of Guidance Technique

The determination of fuel specific impulse (Isp) thrust level and periselenum

altitude has been based upon minimum fuel landing trajectories. The pitch
angle program guidance technique required to obtain the minimum fuel

l/ This conclusion is supported by the very flat shape of figure 33 at (T/rn)0

is increased (e.g., no increase in landed mass as (T/rn)o is increased and

periselenum altitude is held constant) and by the fact that the minimum
periselenum altitude constraint will not allow any increase in landed mass
by the four-engine configuration, which ideally can be obtained with a
decrease in periselenum altitude.
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trajectory is basically open loop in nature and does not lend itself easily to
mechanization as a closed loop type of system capable of achieving a soft
pinpoint landing at a preselected landing site. This section is directed
toward the selection of a closed loop guidance technique which efficiently
performs the landing maneuver in terms of fuel management and also
yields a soft pinpoint landing at a preselected landing site.

Table 4 presents a fuel management comparison of two basic guidance
techniques that are available; namely the modified proportional navigation
system (MPN) and the programmed pitch angle system (OPT) which yields
the optimum fuel trajectory (as derived in Section 1). The optimum fuel
trajectory results (OPT) provide a basis to evaluate the performance of the
MPN as well as to establish whether or not a requirement might exist, in
view of fuel management considerations, to mechanize the programmed
pitch angle system. The periselenum conditions arise from the use of a
synchronous transfer ellipse. Two periselenum altitudes, 15.25 and
38.1 kilometers are used to provide comprehensive comparison of the
relative performance of the guidance techniques. In all cases Isp=420

seconds and a periselenum mass of 31, 100 kilograms are used.

The performance results of the programmed pitch angle optimum fuel
trajectory, MPN with 133,500-newton (30, 000-1b) thrust limit, and MPN
without thrust limiting for a periselenum altitude of 38.1 kilometers
indicate that the MPN system with a 133,500 thrust limit out-performs MPN
without thrust limiting by AV = 8 meters per second. It is important to
note that imposing a thrust level constraint on the MPN system improves
fuel performance. This result is particularly noteworthy in view of the
fact that a 133, 500-newton thrust limit will physically exist with the
mission profile and system configuration chosen in previous sections.

The MPN minimum fuel trajectory with a 133, 500-newton thrust limit and
MPN without thrust limiting are compared in table 4 for a periselenum
altitude of 15. 25 kilometers. The MPN systems are also compared to the
programmed pitch angle optimum fuel trajectory which corresponds to a
thrust level of 133, 500 newtons. The MPN system with the 133, 500-newton
thrust limit requires AV = 3 meters per second more fuel than the optimum
fuel trajectory. '

The values of guidance parameters S and K used in table 4 are determined
by the procedure described in the following paragraphs.
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Reference to figure 5 in subsection 1.3 shows that line-of-sight angular
rotation rate is nearly constant for this class of optimized trajectories.
This suggests that the MPN guidance parameters should be selected to yield
a guidance law which causes the spacecraft to fly an essentially constant
line-of-sight rate trajectory. Investigation reveals that MPN is well suited
to this approach. First change equation 4-5 of Volume III to read

A K-1, A A . NV A
aQ'(S+_K_)R(Q-Qb)+ 5 sin Q

r
C

where be is a bias value of LOS rotation rate. This guidance law tends to
hold £ equal to S'2b.

Kriegsman and Reiss show that the time history of Qin a free space or
perfect gravity compensation environment can be expressed by

Q = V_sin (4 /R ) (1 - 1:/tf)[K (S-1) - 1]

where VO = initial velocity magnitude
LIJO = initial angle between the LLOS and the velocity vector

R0 = initial range to the landing site

t = time after landing initiation
te = nominal flight time = K (Ro L]JO)/(VO sin q;o)
S and K = guidance parameters

One can see that setting K (S5-1) - 1 = 0

produces a constant Qtrajectory. In addition, a particular value of K
corresponds to constant acceleration along the line-of-sight, which corres-
ponds roughly to the maximum thrust requirement for the minimum fuel
trajectory. Selecting this value of K, which is 2, requires that S be 1.5

to satisfy the above equation.

It is found by digital simulation that the above values of S and K produce
a trajectory very similar to the optimum trajectory derived in Section 1.

Spacecraft landing trajectories from a 38.1-km periselenum altitude
to touchdown are shown in figure 35 for each of the guidance systems.
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Notice that the optimum fuel trajectory and the trajectory corresponding to
MPN with thrust limiting are practically identical, indicating the basic
reason why the fuel expenditures for these two trajectories are substantially
identical. From a fuel standpoint MPN with thrust limiting outperforms
MPN without thrust limiting because with thrust limiting deceleration during
the initial portion of the trajectory is somewhat less than the commanded
deceleration, thereby reducing the total time to reach the landing site with
an attendant reduction of the total time during which the effect of lunar
gravity must be counteracted.

30 cnrem—— OPTIMUM TRAJECTORY
e = emem MODIFIED PROPORTIONAL NAVIGATION WITH

28 - THRUST LIMITED TO 133,500 NEW {30,000LBS)
e oo ce MODIFIED PPOPORTIONAL NAVIGATION
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PERISELENUM CONDITIONS
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1 i 1 i 1 1 1 1
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Figure 35. Comparison of Modified Proportional
Navigation Trajectories with a
Minimum Fuel Trajectory

Figure 36 provides further substantiation of the remarkable similarity
of the optimum fuel trajectory and the trajectory corresponding to the MPN
guidance law with thrust limiting. Comparisons of range and range rate
to the landing site as functions of time are shown for both trajectories.
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The effects of MPN/VT guidance system gain constants upon touchdown
velocity, and attendant fuel penalty as well as the effect of MPN/VT switch-
over point along the nominal MPN trajectory upon touchdown velocity and
attendant fuel penalty are summarized in table 5. The fuel penalty term
used here refers to the increase in fuel usage, in terms of
AV, incurred by the use of MPN/VT to obtain the vertical touchdown with
respect to the fuel usage of the MPN system with thrust limiting. Total
fuel expenditure for performing the landing maneuver can be computed by
summing the total fuel required to perform the landing via MPN with thrust
limiting and the fuel penalty associated with the use of the MPN/VT system.

The basic guidance method utilizing the combined MPN and MPN/VT
control scheme is described in detail in paragraph 4.3.2.1.C of Volume III.
Two techniques are considered, MPN/VT-A and MPN/VT-B. MPN/VT-A
involves switching from MPN to MPN/VT when the spacecraft range rate
to the landing site is reduced to 305 meters per second while MPN/VT-B
involves switching from MPN to MPN/VT when the spacecraft range to a
fictitious hover point is reduced to 305 meters. Fuel penalties and touch-
down conditions for both these methods are given in table 5. The MPN/VT-B
technique uses less fuel and is capable of achieving nearly zero touchdown
velocities for suitable choices of the gain constants S, S_, and K. .
Another important aspect of the MPN/VT-B trajectory is that the space-
craft velocity vector is essentially vertical at touchdown.

A comparison of trajectories during the final phase of landing is illustrated
in figure 37. The optimum fuel trajectory and trajectories for MPN/VT-B
and MPN with thrust limiting are shown. Note that both the optimum fuel
trajectory and the MPN trajectory arrive at the landing point with the space-
craft velocity vector approximately 25 degrees to the horizontal while the
MPN/VT-B trajectory arrives nearly vertically.

While the significant performance index during the landing phase will be
fuel management, system performance will be judged on both fuel perform-
ance and touchdown conditions during the final phase. Because of structural
and landing gear considerations, the spacecraft's velocity vector is re-
quired to be vertical, thereby implying a nearly vertical spacecraft
attitude at the touchdown point. This requirement will limit the choice of
guidance techniques to MPN/VT-A and MPN/VT-B.

Table 4 and figures 35 and 36 indicate that the MPN with thrust-limiting
guidance technique is the logical choice for performing the landing maneuver

D-77



(37 0001) sa93owx gog¢ st jutod Surpue] SNOTII}OTY 9Yj 01 d8uUeI 2Y} UIYM SINDIO SIYJ,

‘97®eJ aduea

pue 28uea 90®JI93Ul POJBOIPUI 9Y3 je pajentut souepind LA/NJIN soredtput d-LA/NJWN poylaw souepIny

-uotjesusadwod Aj1aeald

INOY3TM SIe MmB] [0IjU0D NJW Suisn om} ayj 3deoxs sosed I9yjo [[e (pPapnioul uorjesuaduwo) >ﬁ>d.~0v

‘posn st jutod 3urpue] SNOIWOT} ON

-91e1 a23uea

pue oSuel 90®JI9IUT PIIRIIPUT 9Y] Je pajerjtut aouepind I A/NJWN S21ed1putl V-ILA/NJW 31daduod eouepmy

Suntwaiy 3snayy ypa ‘g = 3 ‘g1 = S ‘A1o3oaleas NAW 2Y3 03 192dsax yiim Ljjeusd [ong

q
‘ooueptnd NdW 103 G = § 03 spuodsaxion ( = Nm ‘0°7 = Hmm
0 0 0 0 S eP- 96% 0 0 0°0]0°210°¢ - NdIW
0 0 0 0 GTeP- 96% "0 1°6 8'0|l1°¢€|0°¢] d-LA/NAN LA/NAN
0 0 0 0 G ep- 96% "0 1°0¢ 8°0| 1°¢] 92| d-LA/NAN @H\w\z&”g
8¢°0 0 0 0 G eP- 96%°0 2°8 80| 1°¢] 92| g9-LA/NIN LA/NIN
S0°'8- IT°1 LZ°0- 0 S Ep- 96¥%°0 saysea)D | 8°0| I1°¢| 0°¢ om_..l.H.\w\anz LA/NdAN
0 0 0 0 71¢- S1°01 0 00l 02|09 - NdW
0 0 0 0 1e- S1°01 29 8°'0|1°¢€|6°2] V-LA/NAN LA/NAW
6°28- [€°%9+ | L LI- |L°GG- 21¢€- ST°0T1 {s™ysea) | 8°0| I°¢{ ¢ V-LA/NdW LA/NAW
201~ L 8¢- 9°9¢- LOZ- 21¢- GT'0T |sayseiDd | 8°'0]| 1°¢| < U<|.H.>\.Zn:\4 LA/NAW
(cos/u)| (w sas/w)| (w (0os fu)
.x.\ A%V ( vm\ ) ANV (oos fwx) (uny) T/ v “_ z I jdeduon me|
. . 23ey 28uey]| o8uey ) S s| 3
11RUSd ® aouepinn 10a131U0 9D
20®JI9U] | 9D®IISIUT| q
SUOT}IIPUON [RUTWIID T, IEL

(suoymoau oG ‘€€l

= 9]qelleA® 1SNIY] WINUITXEUI)
JASVHd TVNINYHIL 40 NOSTIVAWOD

g HT1dVL

D-78




(KM)

Y COORDINATE

>

4.0

3.0

OPTIMUM TRAJECTORY

2.8

NAV{GATION, WITH
THRUST LIMITING.

2.0

/ p——— MODIFIED PROPORTIONAL

MODIFIED PROPORTIONAL
NAVIOGATION, WITH THRUST —

/ LIMITING AND VERTICAL
TOUCMDOWN MODIFICATION

0.51

4 4 6 8 . 10 12
X COORDINATE (KM)

14

I750E -vB8-150

Figure 37. Comparison of Trajectories During

Final Portion of the Landing Maneuver




from a periselenum of 38.1 kilometers. This guidance technique incurs a
small fuel penalty of approximately 9 meters per second compared to an
optimum fuel trajectory but exhibits the following significant advantages over
the optimum fuel trajectory:

a. MPN is a closed-loop guidance scheme.
b. MPN is simple to mechanize.

c. A vertical touchdown can be achieved by using MPN during the major
portion of the landing maneuver and switching to MPN/VT for the final
phase. :

Since acceptable touchdown conditions can be achieved with both MPN/VT-A
and MPN/VT-B, the latter is selected because of the overall fuel advantage
indicated in table 5. Table 5 also indicates that the selection of S1 = 3.1,

S2 = 0.8, K1 = 3.0 and no gravity compensation leads to excellent touchdown

conditions and a relatively small fuel penalty. A smaller fuel penalty can be
obtained by accepting a larger terminal condition departure from zero

horizontal and vertical velocity, but the attendant value of K1 = 2 will increase

system sensitivity to bias and random errors. This final selection of guidance
technique indicates a total fuel penalty of 18.1 mps in comparison with the
optimum fuel trajectory.

3.4 Lunar Landing Sensor Error Digital Program

This subsection develops the adjoint system for lunar landing which
employs the modified proportional navigation/vertical touchdown guidance
law. The nonlinear equations of motion and control expressed in a polar co-
ordinate frame are linearized and restricted here to two dimensions. The
resultant adjoint equations are solved by the lunar landing sensor error pro-
gram (LLSE) to obtain the influence coefficients which relate sensor bias and
random (fluctuation) errors to touchdown condition errors. These influence
coefficients correspond to partial derivatives of the terminal conditions with
respect to sensor bias and random error inputs along the landing trajectory
wherein the partials are evaluated at the nominal terminal time.

This subsection is divided into four paragraphs: the linearization of the
kinematic and control equations, the development of the adjoint model, the

definition of the nominal trajectory, and a brief discussion of the application
of the LLSE program.
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3.4.1 Linearization of Kinematics and Control Equations

To apply the method of adjoint systems, the equations of motion and control
must be linearized. The moon is assumed to be a homogeneous, spherical,
nonrotating body, and the spacecraft is assumed to be operating in an ideal
central force field. All equations are expressed in terms of polar coordinates
centered at the landing site and in the plane of motion as shown in figure 21.

(67)

F(t) = force applied to the spacecraft

¥ I = gravitational force = £
~g 2
r
R = vector range from landing point to spacecraft
r = radius vector from the center of the moon to the spacecraft
m = instantaneous mass of spacecraft
( )I = derivative of ( ) taken with respect to an inertial coordinate frame
[ = lunar gravitational constant

In terms of the polar coordinate frame,

.e ve . 2 . .
_ _ . o O
BII _1R(R R$2)+_1Q (R Q2+ 2RQ) (68)
Loodm
where BlI is > with respect to inertial coordinates. Also,
dt
F (t)
—_ i i 6
™ -a.R_1R+aQ_1Q (69)
where
aR = spacecraft acceleration along R
ag = spacecraft acceleration normal to R
IR = unit vector along R
i—.Q, = unit vector normal to R
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The gravity force vector Eg can be expressed as

Eg=—1RIEg| cos(Q-6)+_19|£g|sin(Q-6) (70)

Hence, the equations of motion can be written in scalar form:

W
]

Fgcos(Q-G)=fl—R§22 (71)

a +ngin(Q -9) =R ZRQ

Q
where
Fo ™| Egl
g -8

Linearization of equation 71 yields

5 R:aaR+Fg[-sin(Q-e)59+sin(a-9)59]

L, o (72)
+Q°“6R+ 2R Q60

65Q = ;—{{6aR+Fg[-COS (Q -6)66 + cos (2-0) 69,]

-Q8R - 2Q8R - zizafz}

where the operator § ( ) denotes a deviation of the bracketed/quantity from
the nominal value. Equation 72 is a linear, variable-coefficient differential
equation. The variable coefficients of the deviations are evaluated using the
nominal solution to the original nonlinear differential equation. Approximate
closed-form solutions to the nonlinear differential equations, obtained in
subsection 3.3 of this appendix and in Appendix D of Volume IV, are listed in
paragraph 3.4.3 for reference.

Neglecting the term 68, the linearized equations of motion become

§R = 5aR + Fg sin (- 0) 6\Q,+S'},2 6R + 2RQ6Q

LY . - [ . (73)
e lR{SaQ+ Fg cos (f1- 0) 6§ -Q6R - 28 6R - 2R 69.}
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Next, the control equations are linearized to obtain linear expressions for

6 ap and 639- The nonlinear equation used to control range rate as a func-

tion of range is

K -1 R®-R?

%R *© 11<1 [ R-R:] (74)

Linearization of this expression yields

da da
R R .
6aR_aR 6R+7§6R (75)
where
22 -2
aaR =-Kl-l[R -Rb ]
R K1 (R-Rb)z
aaR i Z(Kl-l) R
o R K1 (R-Rb)

The nonlinear expression used to control normal acceleration in the
MPN/VT guidance mode is

- 2

a. =S l.lf'Z-S R

Q=5 2 R © (76)

Linearization of equation 76 yields

da da da da
Q Q . Q Q .
[4) = 5 6 —_— 5Q 19
2 IR R + IR R + 30 +Té— (77)
where
aaQ ) R
R 2. Z
da
Q R
- =SQ -2 -_
dR 1 52 R



OaQ ) S_.R_Z
3¢ "2 R
aaQ_

230 "5 R

The partial derivatives indicated in equations 75 and 77 are evaluated on the
nominal solution of the nonlinear equations of motion.

3.4.2 Adjoint Model

The method of adjoint error analysis used is described in detail in sub-
section 6. 2 of Appendix A of this volume. In essence the adjoint set of
equations provides the capability to estimate the effects of bias and random
errors occurring throughout the lunar landing trajectory on terminal con-
ditions without resorting to Monte Carlo techniques. Prior experience indi-
cates that the terminal error is seriously affected only by sensor errors
occurring in the final portion of the landing maneuver. Therefore the adjoint

error analysis is applied only to that portion of the landing using the MPN/VT
guidance law.

Mathematically a linear first-order matrix differential equation

(0 = [Am)] x(0) i x(0) = x_ (78)

has a corresponding linear first-order matrix differential equation which is
adjoint to the original set, given by

[A (t)] - - [A(t)] T [A(t)] ;[A(tf)] =[A f] (79)

where both [A (t)] and [A(t)] are matrices. By using normalized final
conditions for the adjoint equations, [A f] E [I], the solution of equation 79

yields information that can be used to calculate sensitivity coefficients which
relate sensor errors to the resulting terminal deviations.

Figure 38 illustrates the adjoint equations in block diagram form. (The
relationship between the adjoint system block diagram and the block diagram
of the linearized actual system is given by Laning and Battin. 8/ In addition
to the linearized kinematics and control equations, second order filters are

8/

J.H. Laning and R.H. Battin, Random Processes in Automatic Control,
New York, McGraw-Hill Book Company, 1956.
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included to represent lateral and longitudinal engine responses as well as
sensor dynamics. The figure also includes data processing blocks added to
the adjoint system for the purpose of determining error sensitivity coeffi-
cients.

Note that the adjoint method of error analysis is subject to the principle of
linearization. Consequently, the results of the analysis are applicable only
when small departures from the nominal solution to the nonlinear equations
are considered.

3.4.3 Nominal Solution

Nominal solutions to the nonlinear differential equations are developed in
closed form in subsection 3.3 of this appendix and in Appendix D of Volume
IV. These closed form solutions, used to evaluate the time-varying coeffi-
cients of the linearized equations, are given below for reference.

Rb-RbT,oSTSTl
R = Ro (tf-'r) K (80)
T <T£XK
Ry +Ro-R) W+ em—=y| '™ t
o b
T=tf-1: (81)
2(K -1)
2 C 2 2 | B-Ry K 1
R = - Rb+(Ro-Rb) TR (82)
o b
( [ 11 )
> 2(K -1)
K(R -R,) R
tf= —'.—O-—'B—i 1 - —_Z——b_E >+Tl (83)
-R R -R
o L o b
K
2 2(K -1)
RO—Rb Rb
TI:- - ; . 2 (84)
Rb Ro-Rb
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Cl'r1 CZTz
Q = - + = (85)
t ! t 2
f f
. d
S T (86)
. d(Q)
Q ———dt (87)
1/2
K (S, -1) 48
1 2
a) = {1+ [1- —2-] } (88)
K (S, -1) 45, 1/2
a, =—7—{1-[t-—=] } (89)
t a_Q
f . 2 o
C, = Q  +— (90)
1 az-a1 [ o tf ]
t a. Q
f . l o
C, =——IQ + (91)
2 al-az[ o tf ]

3.4.4 Method of Application

To recapitulate, the adjoint method of analysis, and specifically the LLSE
program, yields the influence coefficients which relate touchdown error to
sensor bias and random (fluctuation) errors which occur throughout the entire
nominal trajectory. These influence coefficients represent partial derivatives
of the various touchdown quantities, namely R, R, £, and 2, with respect to
the numerous sensor measurement error quantities, and scale factor, or
percentage errors in these quantities. These partials are in effect evaluated
at the nominal touchdown time and therefore represent the value of the
partials evaluated at a fixed time. This accounts for the appearance of
influence coefficients for all touchdown quantities.

The validity of the results is subject to the accuracy with which the non-
linear differential equations can be represented by variable coefficient linear



differential equations linearized for small departures about a nominal
solution (trajectory).

Although the adjoint program has been written specifically for MPN/VT,
the program can be used to obtain results for the MPN system by properly
adjusting the nominal solution.

Previous sections of this appendix have developed the adjoint system and
given the nominal trajectory solutions about which the adjoint equations are
linearized. Next, the initial conditions placed upon the adjoint system and
outputs of the adjoint system are discussed.

Initial conditions for the adjoint equations are determined by the output
errors of interest. In the lunar landing problem we are interested in the
position and velocity errors at the terminal point. In the polar coordinate
system used, the errors are specified by departures from the nominal touch-
down conditions in position R, £, and velocity, R, Q. Hence the initial con-
ditions applied to the adjoint equations are unit initial conditions on the vari-
ables Xl’ XZ’ Yl’ and YIO shown in figure 38. The unit initial conditions

are applied individually (one at a time); the initial condition on x_ generating
R (range) error sensitivity coefficients, X, (0) = 1 giving R error coefficients,
¥, (0) = 1 giving ) angular error coefficients, and Yio (0) = 1 giving § error
sensitivity coefficients.

The various output quantities shown in figure 38 are the result of post-

ulating certain types of sensor output errors. The 16 sensor errors post-
ulated are listed below.

a. Bias errors

(1) Constant range bias mp
(2) Range scale factor error SFR
(3) Constant range rate bias mR
(4) Range rate scale factor error SFR
(5) Constant angle bias m
(6) Angle scale factor error SFQ
(7) Constant angle rate bias m,
(8) Angle rate scale factor error SFg-2




b. Random (fluctuation) errors

(1) Fixed level range error

(2) A percentage of range error

(3) Fixed level range rate error

(4) A percentage of range rate error
(5) Fixed level angle error

(6) A percentage of angle error

(7) Fixed angle rate error

335332373

(8) A percentage of angle rate error

W refers to the spectral density of the noise in the sensor indicated by the
accompanying subscript.

Thus the adjoint system provides 64 influence coefficients (4 output errors
for 16 types of input errors) which are used in determining the allowable
magnitude of sensor errors to meet a certain tolerable set of output errors.
The influence coefficients are printed out in two 4 x 8 matrices, one matrix
for bias errors, one matrix for random errors.
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APPENDIX E

LUNAR ASCENT

1. ERROR EQUATIONS FOR GUIDANCE SYSTEM

The error equations are mathematical formulations which represent the
accelerometer, gyro, and platform errors as functions of the thrust accel-
erations and error coefficients. The basic method with slight modifications
is taken directly from Pitman (Ref. 1).

The error equation for the accelerometer is:

(1)

2 3
A, = .+ LAt A+ LA, + AL+ AA . +
A i %01 %1it T %ai™ a31A1 a41AJ a51AJA1 aL61Ak a7iAkAi
where
A A = the component of acceleration error,
a.. = a bias term,
0i
ali = a linear scale factor error,
a_., a_. = a nonlinear coefficient,
21 3
a4i, a5i = cross-axis bias,
a,,, a_, = cross-axis scale factor,
6i’ 7i
i = input axis,
Ai’ Aj, Ak = components of thrust acceleration,

i, j, k, take on cyclical permutations of x, y, z.

Ref. 1: Pitman, G. R. (Editor), Inertial Guidance, John Wiley and Sons, Inc.,
1962.




The components of velocity and position are

t
AV, = fAA. dt, (2)
1 0 1
and
t
AS, = f AV, dt: (3)
1 0 1

Along the x-axis, the values of AVX are:

t £ t t
AV =a t+a fAdt+a fA at + a fA at + a fA dt
X 0x 1x X 2x X 3x X 4x y
0 0 0 0
t t t
+ at + t+
25 fAyAx 2 | A, an f A A dt. (4)
0 0 0 Z X

In a similar manner, AVY and AVZ are obtained. The values of ASX, ASy,
and ASz are obtained by a second integration. All the integral coefficients

of a .’ By’ = " " are tabulated in tables 1 and 2 for the direct and parking

ascents respectively. All integral coefficients containing A and V_ are zero
since the ascent trajectory is in the x-y plane.

The error equation for the gyro is

b= +
¢i bOi ¥ bliAi bZiAs ¥ b3iAiAs (5)

where
¢, = the drift rate about the input axis,
bOi = the fixe.d drift rate about the input axis,
bli’ bZi = mass unbalance along the input and spin axes respectively,

b,. = the anisoelastic effects,

>

>
)

H

components of thrust acceleration along the input and spin
axes.




TABLE 1.

VELOCITY AND POSITION INTEGRALS FOR DIRECT ASCENT

Velovity Cocfficient Integrals

Position Coefficient Integrals

Vialue Value
Symbol Integral Short Long Units Symbol| Integral Short Long Units
Boost Boost Boost Boost
’ ! 4 4
1 [ Aaar [146.2 156.8  |g-sec I fl dt 1.5x10° |2.64x107 |g-sec
1 o x 171 0 1
F 2 t 3 3| 2
L '{;A at  |100.5 66.2  |gtsec | LI, é'lzdt 9.3x10° |8.74x10° |g%-sec
‘ 3 Y 3 3{ 3
i f Adt 71.0 31,0 g -sec 1 fl dt 5.46x10° [3,26x10° |g>-sec
3 b 33 L3
t t , .
1, j(;Azdt 26.7 183.1 g-sec | 1, '[(;14dt 4.75x10° |3, 17x10% [g-sec
t
2 t 3 4
1 f Acdt 5.71 32.9 g°-sec I [ Lt 5.40x10° |1.10x10" |g%-sec
5 o 55 5
t t
I [ Adat 1,18 [ 10.6 |g>-sec | ,I [rac |1.20010 [1.90x10% [ sec
6 o 676 o 6
y 2 ¢ 3 3l 2
I j(;AxAzdt 16.53 24.9 gh-sec | L1 'gl?dt 1.42x10” [6.59x10° |g“-sec
s 4 4 5 6 6
1. . - . . -
Ig j(;Axtdt 93x107| 4.16x10% g-sec” | glg j;ledt 1.31x10° [4.8x10° |g-sec
t t
1 fA tdt 1.58x103 1.03)-1104 g-sec I I dt 2.40x105 3.56x106 g-sec
9 ) A 99 b 9
¢ 4 4|2 F 5 6| 2
- 1.80 -—sec
110 j';vaxdt 1.10x10 |1.23x10° [g -sec 10110 .{;Ilodt 6.99x10 x10" lg -sec
F 2 3|2 F 5 5| 2
1 v_A dt | 8.7x10° [1.53x10° |g°-sec 1 fx dt | 2.20x10° {6.41x10° |g°-sec
1 P IR
fvaa 26x103 [1. 18x10% [¢° I _/t'l dt  [3.62x10° {1.75x10% [g%-sec
I12 Ovz xt 3.26x1 1, 18x1 g -sec 1242 0“ . . g >
f d 5 2 03 2 1 tI dt 1 55x105 1 3lx106 2 se
- > . - -sec
I, j;VzAZ t {3.5x10° W.02x10° |g-sec” | .1 fo” g
NOTE: All integrals containing Ay or vy are zero and are not listed above.
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The error equations for the gyro become:

t
- 1S = + + +
x-axis; ¢ fo [box bl Ay F oAt by A A ] at, (6)
t
-axis; = by, by A tb, A +b AA]dt, (7
y q)zx fO[ Oy ly 'y 2y 3vy =z )
t
z-axis; ¢ =f[b tbh A +b, A +b AA]dt, (8)
Xy 0 Oz y 3z z'y
where
¢yz = angular displacement in the y-z plane about the x-axis,
ox angular displacement in the z-x plane about the y-axis,
¢xy = angular displacement in the x-y plane about the z-axis.

This is shown in figure 1.

Note that the acceleration term Ay in the last element of equation 8 does not
follow a cyclical order. This is from the orientation of the z-gyro as shown
in figure 2. By orienting the z-gryo in this manner rather than a cyclical
order, a substantial simplification of the formulas results since A =0
and V =0.

y

Misalignment of the accelerometer input axis causes measurement of the
normal acceleration components given by

A1

1]

+ . - .
Ai cos ¢ij cos ¢ik Aj sin ¢ij Ak sin ¢ (9)

ik
where

A1

the resultant acceleration input to the I accelerometer
I and i, j, k, take on cyclical permutations of x, y, z.

On the assumption of small angles, the velocity errors become

AVI'E fo [Aj ¢ij - AL c|>ik]dt. (10)
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Figure 1. Misalignment Angles of Accelerometer Input Axes
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A second integration gives position errors. KEquations 10 and 11

t
ASI=‘/;) AV, dt (11)

relate velocity and position errors to the gyro coefficients. The values of
AV and AS are calculated for the direct and parking ascents.

The platform error model equation is:

= 0) + + A+ A 12
%5 %5 (0) + e L TR (12)
where
q;_j = angular displacement in the i, j plane about the i-axis
i
q)i, (0)= initial angular displacementinthe i, j plane about the
J i-axis
€~ stabilization servo error about the k-axis in the i-j plane
pij’qij = platform deformations along the i-axis caused by Ai and

A, acceleration components
J

These equations have the same form as the gyro error equations. By
substituting equation 12 into equations 10 and 11 the velocity and position
errors related to the table errors are obtained.

2. TRANSFER MATRIX

The lunar ascent study is primarily concerned with determining the
sensor specifications for the boost phase. It is of interest to compare the
effect of the position and velocity errors at thryst termination on the final
position and velocity states at terminal rendezvous. This section is
concerned with the variation in the initial and final states of a transfer
ellipse which is considered as a thrust free coast phase.

Since the position and velocity errors at thrust termination are given
in moon centered navigational axes, the errors must be transformed




through the central angle traversed during the thrust phase.
transformation matrix is: :

cos cpf

0

sin cpf

-sin ¢f

0

cos q>f

Ay

Az

q>f =the central angle traversed during boost,

Ax, Ay, Az

As
o

position errors at thrust termination in navigational coordinates,

The

the tangentent error component along the trajectory,

the normal error component to the orbital plane,

the radial component.

The velocity conditions may be obtained by substituting the velocity

components.

The transfer matrix in the most general form for any centrally traversed

angle is:

[ Ar/r1

As/r

Ay/r

Avr/v

Avt/v

Av
| /v

The zero subscript denotes the initial errors at the injection point of the

The resulting position and velocity errors are now properly
oriented to be transformed for the coast phase.

11

21

41

51

transfer ellipse.

de3

14

24

44

54

15

25

45

55

d

66

Ay

no/voj



[o N
|

2 .
A cos 6 sin ¢
= 2 - 1 A-1 /- £ + cos ¢_ (1 + cot tan ¢ )
11 (1+ e cos ¢) e sin ¢y f | ¢f
2l A sin 291 A-Z) - sinq>f
14 1 2(l-e cosd) 2e sinq>l
+ coscpf (1 + cotq>l tan¢>fﬂ}
2 .
A cos 91 A1 -sin q>f
d15 =2 1-1+ecos<1> (e) sind)l +C°S¢f(l+COt¢l tan¢f)}
d - A sin 261 . 2(A-1)sin¢ (2 + e cos o
21 Zez e (2-A) 2

2 (A-1) sing
+ (21; e cos ¢) > N, 1 (2 + e cos ¢1)
(1-e")7 (1 +ecos¢) etes

3 ¢f(l + e c:oscp)2

[P
il

+
(A-2) (l-ez)s/z
A (A~ 2)sin¢ sin 26 (2 + ecosq)l)

) (1 +e cos<1>)Z % [A(l - eZ)

(l-ez)z (l+ecos¢1)2 (A-1)

A(A-2)sin¢ sin29 (2 + e coscpl) 3q>ftane1 (1 + e cos q;)Z
i Ze J+ 2572

(1 -e)
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d2.5

36

41

44

45

51

A sin 201+ 2 sin ¢(A-1) (2 + e cos @)
2 e (2-A)
e
. (L+e cos ¢)2 2(A-1) sin qSl (2 + e cos d)l)
(l—ez) (1 + e cos ¢1)2 e(2-4)

+

3¢f A(1+ e cos ¢)?

(A-2) (1-e%) /%

sin q>f

cos 91

A cos46 1 |:(A—1) cos ¢

(1 + e sind) e sin ¢1

1

+ sinq;f (1 - cot ¢, cot¢f):|

-Acosze sinZGl [ (A - 2) cos ¢f

(1 +e sinq>)2

2 e sin ¢1

e sin q>1

2 Acos4 61 l:(A- 1) cos ¢

2
(1+ e sin ¢)

(A-1)
e (2 - A)

_ 2 e sin ¢(1 + e cos ¢)

+ sin ¢>f(l - cot q>f cot ¢1)]

cosod (2 -ecosd)-e sinzq)}

sin ¢, (A-1) (2 + e cos ¢,)

(l-ez) (1 + e cos ¢1)2

e(2-A)

+ sin¢f(l - cot q;l cot q;f)}
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d54

55

de3

d

66

A (A-2) sin 2 61 cos ¢ (2 + e cos ¢1)

2e
+2.e sin ¢ (2 + e cos ¢) { A(l-ez) ) A (A-2) sinZGl sin ¢
(1.9,2)‘2 (1 + e cos qsl)2 A-1 2e(2+ecos ¢1)'1

(1 + e cos d))z A(A-2) (2 + e cos d)l) cos ¢ sin 291

e (1—e2)2 (1 + e cos d)l)2

+

3 tan d)l (1 + e cos ¢)

+((1+ecos¢)-2d)fesin¢)

_2(A-1)

—E—(Z_-—A_)— {(2+ecos¢) cosd)-esinzd’}

_2(1+ec08¢)esin¢ {Z(A-l)sin¢1(2+ecos¢l)}
(1 - 62) (1 + e cos ¢1)2 e (2 - A)

+3A(1+ecos<i>)
(a-2) (1-¢2) */*

{(1+ecos¢)-2¢fesin¢}

(1+ecos¢)+cos¢fesin¢

1/2

=-sin¢£ 5
(L+2ecos gte)

cos ¢>f(1+ecos ¢) + sind)fe sin ¢

cos 91(1 + 2 e cos d)+e2) 1/2




where
r = the selenocentric radius,
v = the velocity,

0, = the angle between velocity and tangent plane,

1
¢ = the selenocentric angle measured from perigee,
e = the orbit eccentricity,
A = rvz/p
. = the gravitational constant,
f = the final value (subscript),
by =, +0

For the 180 degree Hohmann transfer c]>1 = 0 degree and ¢ = 180 degrees.

This subject is treated in greater detail in Ref, 2.

3. PARKING ORBIT INITIAL ERROR PROPAGATION

The transfer matrix of Section 2 can be reduced to the following form for
the parking orbit. B

FAr/r h
As/r
Ay/r
Avr'/v

Avt/v

Avn/v

-

r-Z-coscb

2sind - 3¢
0

sin ¢

2cos¢ -3
0

-sin ¢

sin ¢

-2 (1 - cos ¢)

cos ¢

-2 sin ¢

2 (1 - cos $)

-3 (¢ - 4 sin §)

0

2 sin ¢

-3+ 4 sin ¢

0 ]

sin ¢

-

—

Ar /I‘ 7
o o

Aso/r0

Ayo/ro

Av /v
r o
o

Avt / v
o

Avno/vO 3

Ref. 2: Gretz, R.W.,, Error Sensitivities in Satellite Ascent and Orbital

Transfer, ARS Journal, Vol.

32, No.

12, Dec. 1962.



Similar forms for the transfer matrix are given in Ref, 3 and 4. The
elements of the transfer matrices in both Sections 2 and 3 are approximations;
however, for the purposes of this study, the variations are of second order
magnitudes. The results are graphed in figures 3 and 4 in normalized form.

4, VELOCITY REQUIREMENTS BETWEEN TWO CIRCULAR CO-PLANAR
ORBITS

Problem definition consists of determining the minimum total velocity
impulse for a theoretical 2-impulse transfer between co-planar circular
orbits with arbitrary terminals. Only two geometrical restrictions are
implied, tangential (or apogee) capture at the target orbit and intersection
with the inner orbit.

In addition to the exact solution, an approximate solution is given for
obtaining quick and accurate estimates for cases where the radii ratio is
near unity and the central transfer angle is above 40 degrees. For transfers
below 40 degrees, severe fuel requirements are imposed on the interceptor
for circle-to-circle transfer.

Nomenclature (see figure 5).

v, = circular target velocity

vp = circular parking velocity

v, = elliptical velocity at apogee (point 2)

v, = elliptical velocity at injection (point 1)
sz = V.-V, = velocity increment required at point 2.
Avl = lyl - ‘Yp | = velocity increment required at point 1.
Av1 = Av1 + Av2 = total velocity increment.

r, = target orbit radius

Ref. 3: Duke, W.M., E.A. Goldberg, and I. Pfeffer, Error Analysis

Considerations for a Satellite Rendezvous, ARS Journal, Vol. 31,
No. 4, April 1961, p. 505-513.

Ref. 4: Jensen, J., J. Lock, D. Kraft, and G. Townsend, Design Guide
to Orbital Flight 1, McGraw Hill, 1962
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Figure 3. Effect of Initial State Errors on Final State Position

Errors for Near Circular Orbits
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. 21 APOGEE

e

I750E-VB - 152

Figure 5. Tangential Capture for Transfer Between
Circular Orbits

r . = parking orbit radius

¢, = true anomaly between injection and target contact

B = gravitational constant

a = semi-major axis of transfer ellipse
y = flight path angle

p =T, -1,

To obtain the total velocity increment, consider the following relationships
available from orbital mechanics,

V =A /}.1,(—2--—1-): }J’a(l-ez) (13)
r a r cos y

E-17



Substituting into the velocity increment required at point 2 and normalizing
with respect to the target:

Av A% T vy
—2=1-—2=1- Z-—E Av, (14)
AY v a )4
t t TS
Av
The cosine law yields
vt
2 2
Avl v1 v v1 v
—_—= (—) + -E> - cos y P (15)
v v Y 2
t t t Vt

Substituting 13 in 15

Av r T r
v_lz\%r_z_zé-zr_z'\/-j_(l—ez) (16)
t 1 1Y "1

To eliminate a and e and obtain ¢t as an independent variable, two additional

equations for the ellipse are required. Imposing the minimum fuel constraint;
i.e.,, target radius equalling transfer apogee:

rzza(1+e)

and at injection,

. —rz(l—e)
- l-l-ecosq:»t

Substituting these two equations into 14 and 16, and summing to obtain the
total required velocity increment:

2
él:l-x+\/3K-2+x -2K3/2x (17)

v
t
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where

1 -
_ cos ¢t
*=K-coso
t

r

2

K:-;—

1

The above differences under the radical are very small when the radii
ratio is nearly unity and hence double precision on a digital computer was
required to obtain the graphical results appearing in figure 6, Comparison

between Av and the required total Hohmann increment AVHOH was obtained

by simply normalizing the computer program yielding AV/AVHOH .

The following analysis provides a workable analytical approximation of
AV/AVHOH » not requiring a digital computer program. The results are

justified graphically by comparison with the above exact derivation.

The authors in Ref. 3 have provided a first-order linear approximation to
the relationships between the initial and final state variations for low-
eccentricity orbits. Only the relevant equations in Ref. 3 will be used in
this derivation, These are given as follows:

Avx Av
Ar:(Z-—cosM)Aro+2r(l-cosM)T+rsinMTY (18)
Af:ZAvx sinM+AvY cos M (19)

where
r, v = initial circular parameters
Aro = initial radial variation
Av = initial tangential velocity variation
X
Av__ = initial radial velocity variation

M = mean anomaly between initial and final states

P
a3
>
He
1]

final state variations in radius and radial velocity
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Note that all deviations are relative to a circular orbit. It is therefore ex-
pected that transfer trajectories of high eccentricity, obtained from a linear
perturbation of a circular orbit should be very inaccurate, i.e., orbits re-
quiring small transfer angles. Since the fuel penalty may be prohibitive at
these angles, linearization is justified for the region under consideration.

To find the injection impulse, consider first a perturbation of the parking
orbit., Since an initial altitude variation is not relevant Ar = 0, and, for
o

tangential capture at the target orbit Ar = 0. But Ar is constrained as the
difference in radii between target and parking orbits, Ar = r,-T,=p. Sub-
stitution of the above into equations 18 and 19 yields,

Av Av
£ -2 -cosM) —= + sinM—2 (20)
Tr v v
1 P P
Avy
ZT: -2 tanM (21)

y__°P 1
v ~2r 1 -secM (22)

But Avy is simply the normal component of the required injection impulse,

Av = Av. cos a
x

1 1
A\f|
A
A "
Also, from 21 —Y-=tanaq, = -2tan M £
Avx 1 Av,

Solving 22 by eliminating a, and Avy, the initial required impulse is

1

AV1 p'\/4-3COSZM

v =Zr l -cos M
P 1

(23)



The final impulse is found by simply reversing the logic, i.e., consider-
ing perturbations of the outer orbit. Since the only perturbed quantity is the
tangential velocity, equation 18 takes the form,

sz
_E_ = 2 [1 - COS (-M)] T (24)
2 t
where

Av = 0 (orbital contact at apogee)

Yy
sz = Vt - v2
Ar =0

o
Ar = -(rl - rz) = p
A ) 1 (25)
vt Vt _Zrz l -cos M

Summing the two normalized impulses,

v

AV P 1 P i 3cosfMit (26)
v, 2(1 - cos M) T, v, r,

But, for circular orbits, v =\/¥—-

) 3/2
. Av . P ( 2> \A-3COSZM+1 (27)




}----------

Normalizing with respect to the Hohmann transfer M = 180°,

[ . 3/2 T
<r2> '\A-?;coszM+1
Av _ 2 1 (28)
AVHOH. 1l -cosM r 3/2 41
= 1 .
As a first order approximation, let r) =T, Also, for low eccentricity
orbits, take M 2 ¢t. Hence,
1 +4/4-3 cos2 ¢
Av _ t (29)
AVHOH. 1 - cos cbt _

Although analytical justification for the above assumptions is not presumed,
it is evident from a graphical comparison with the exact results (see figure 6)
that the approximate equation is more than adequate in the region under con-
sideration, i.e.,, transfers over 40 degrees., Since it is a simple matter to
calculate Av for a Hohmann transfer, equation 29 is extremely useful for
quick and accurate estimates of the fuel penalty for various central transfer
angles.

Figure 6 shows the total velocity requirements as a function of the parking
altitude for various central transfer angles, Figure 6 also indicates the in-
efficiency of small transfer angles between circular orbits. Note that
AV/AVHOH is practically independent of the altitude of the parking orbit for

transfers above 40 degrees. The results of figure 6 provide justification for
limiting the parking orbit to the lowest possible altitudes if fuel expenditure
is the only criterion.

5. PARKING ORBIT TRANSFER CONSIDERATIONS

This section considers the fuel requirements for boost and orbital transfer
for the parking ascent phase of the lunar rendezvous.

Referring to figure 7 which provides a measure of the total -ascent and

¥
transfer fuel requirements, Av is defined as the total velocity impulse
required for the minimum fuel ascent and transfer trajectory. This trajectory
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Figure 7. Total Velocity Requirements versus Parking Altitude for

Various Central Transfer Angles (200-km Target Orbit)




insures terrain avoidance during parking at 30 km and is followed by a 180
degree Hohmann transfer to 200 km, For a similar transfer but with an
initial boost to 150 km, 21 percent more fuel is required; for a 90-degree
transfer from 30 to 200 km the fuel penalty is 7 percent, but the time saving
is roughly equivalent to one-fourth the period of the target orbit, or 15 min-
utes. For faster transfers from 30 km the fuel penalty becomes quite
significant; i, e., a direct ascent is preferable,

For the high altitude boost, which takes only a few hundred more seconds
than the 30-km boost, it is evident that low transfer angles have a significantly
lesser effect. The fuel penalty between a 75 degree and Hohmann transfer is
only 3 percent for the high altitude, long boost,

For a very quick ascent, time savings close to 25 min can be achieved at
a fuel penalty of less than 30 percent compared with the minimum fuel ascent.
This fuel difference is equivalent to a Av of roughly 1/2 km/sec.

Referring to figure 8 which gives the ratio of transfer fuel to the total fuel
required, a 6-percent penalty is paid for a 90-degree transfer compared to
the Hohmann from 30 km. This penalty is reduced to 1-1/2 percent for the
150-km parking orbit. Obviously, fast transfers from low altitudes may
place requirements on the rendezvous scheme which are too stringent; i.e.,
fuel is wasted in obtaining injection velocity, Figure 9 also substantiates this
conclusion,

Figure 10 simply provides the magnitude of the total transfer impulse for
various parking orbits and transfer angles, In addition it is relevant to in-
dicate a close approximation to the efficiency of the boost phase by itself,
Thus, the difference between the characteristic velocity increment and the
parking velocity is plotted versus altitude,
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APPENDIX F

LUNAR RENDEZVOUS

SUMMARY OF NOTATION:

fon

IR S N N

By

Longitudinal acceleration of chaser due to thrusting
Normal acceleration of chaser due to thrusting

Angle between chaser-to-target range vector and pos-
itive x-axis of selenocentric coordinate system

Orientation of LOS with respect to an inertial reference
LOS angular rate with respect to inertial space

9.81 m/sec2

Altitude of chaser

Orbital plane inclination

Fuel specific impulse

Control parameters

Gravitational constant of moon = 4,90 x 103 km3/sec2
Initial mass of chaser

Mass of propellant consumed by chaser due to rocket
firing

Chaser-to-target range

Chaser-to-target range rate

Chaser-to-target range at initiation of active rendezvous
Radius of moon = 1738 km

Smoothed value of measured chaser-to-target range

Range at which longitudinal control of chaser switches
from coarse to vernier



R2 Standoff range at termination of active rendezvous
. 11

Rx’ RZ Components of chaser-to-target range in x~ z~ system

t Time

tF Amount of time for which chaser rocket is to be fired

t, Interval between subsequent data points

AV Velocity increment

Avh Total velocity increment required to perform a Hohmann
transfer

AVI Velocity increment required for injection of Hohmann
transfer

AVZ Velocity increment required during Hohmann transfer to
synchronize the chaser with the target

AVI Deviation from nominal V1 at injection

1 1
vV .V Relative velocity between target and chaser inx =z
’ system

ch’ VYC Components of chaser velocity in selenocentric coor-
dinates

ch’ VYC Corrected values of chaser velocity in selenocentric

coordinate system

VxT’ VYT Components of target velocity in selenocentric coordin-
ate system

1 1 1
X, z Chaser centered coordinate system where x is along the
local horizontal and in the direction of motion; z!l is
along the radius vector in the direction of the moon
Xc YC Chaser position coordinates in selenocentric coordin-
ate system
X, YC Corrected position coordinates of chaser in selenocen-
c . :
tric coordinate system
Xt’ Yt Target position coordinates in selenocentric coordinate

system

1. COMPUTER SIMULATION OF LUNAR RENDEZVOUS TECHNIQUES

The computer program used to simulate the lunar rendezvous is dis-
cussed in this Appendix. This program is based on several assumptions




about the orbits of the two vehicles. A nonmaneuvering target vehicle is
assumed to be in a circular retrograde orbit about the moon. A maneuver-
able chaser vehicle is assumed to pe initially in a lower altitude circular
retrograde parking orbit. The orbits of the two vehicles are assumed to be
coplanar and no out-of-plane deviations are considered, thereby reducing the
problem to a two-dimensional model.

The nominal case is lefined as follows: The altitudes of the target and

chaser parking orbits are 200 and 30 km respectively. The initial angle

¢ 1 (figure 1) between the two vehicles is defined to be such that a horizon-
tal nominal thrust applied to the chaser at its initial position will cause the
chaser to collide with the target exactly 180 degrees later. The program has
been arranged so that deviations from this nominal case can be studied. The
deviations which have been considered are a deviation in the altitude of the
chaser parking orbit, a deviation from a nominal incremental velocity vector
in both magnitude and direction, and a deviation from the nominal central
angle between the two vehicles.

1.1 Initial Positioning of Target and Chaser

The initial relative positioning of the target and chaser vehicles depends
upon a set of deviations from nominal which are inputs to the program. The
chaser vehicle has arbitrarily been placed on the positive axis at the time
when the injection into the ascent ellipse is made. The deviation from nom-
inal thrust level is specified by an initial velocity increment Avi. Thus the
position and velocity vectors defining the ascent ellipse of the chaser are:

X =X
e p
Y =0
e
v =V_siny
xe I
=v +
VYe vp Av1 + AVI cos vy
where:
X , Vv = position and velocity of chaser in parking orbit of
PP specified altitude
Avn = velocity increment due to nominal thrust
Y = deviation from nominal thrust angle (See figure 1)

A set of orbital elements for the chaser is calculated from this position
and velocity vector by the method described in paragraph 1.7.2. The target
vehicle is placed in a 200km circular orbit and positioned initially with a
specified deviation from the nominal angle ¢ o (figure 1) between the two
vehicles,
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Figure 1. Orbit Diagram - Lunar Orbit Rendezvous

1.2 General Flow of the Program

The program increments time at a specified interval and performs calcu-
lations at each time point based on simulated sensor readings to determine
when to make rendezvous achieving corrections to the orbit of the chaser ve-
hicle. At each time point the program determines the selenocentric coor-
dinates of both the target and chaser by applying the method described in

}




paragraph 1. 7.1 to the orbital elements of each vehicle. These selenocentric
coordinates are then transformed into a local radar oriented x} z! coordin-
ate system with the origin located at the chaser. The positive x1 axis lies
horizontal to the surface of the moon in the direction of motion and the pos-
itive z  axis lies along the vertical in the direction of the moon. Thus the
local coordinates of the target are represented by a translation and rotation
of the selenocentric coordinate system with the angle of rotation X\ being the
angle the chaser makes with the axis. Thus:

A =tan” ! (Y /X))
C C

A\ € )\ - si - -
Rx « |-[fcos x - sinX (Y, YC)(Vyt VYC)
RZ Vz -sin \- cos)\ (Xt - XC)(th - ch)

where:

Ry, Ry, Vx’ VZ position and velocity of target relative to chaser in

xlzl coordinate system

X, Y. v position and velocity of target in xy system

Xt Vyt
Xer Yo, Vxeo Vyc= position and velocity of chaser in xy system
However, due to the rotation of the xlzl system from point to point, it

was found that the relative velocity terms, vx and v,, were not truly repre-

sentative of the closing rate between the vehicles. Thus, it became neces-
sary to define closing rates, Ry and R, in the x1z1 system as the range
difference divided by the time interval between two successive points,

The two quantities pertinent to sensor observations are range and eleva-
tion defined as the angle between the positive xl axis (horizontal) and the line
of sight from the chaser to the target (figure 1). Inaccuracies in the sensor
measurements are simulated by superimposing random numbers of zero
mean and specified standard deviation upon the actual values of range,
closing rate, and rate of change of elevation. These observations are re-
solved into x! and z components of range and fed into a smoothing function.
The smoothing function performs a least square fit of a specified order on a
specified number of points and extrapolates the solution to the next observa-
tion point where the smoothed values of Ry, R,, Ry, and R, will be used as
the control variables in the firing laws.

1.3 Firing Laws

The firing laws described in this subsection serve to control the firing of
the chaser rockets which are positioned along the x! and z! axes.



The firing laws being used in this system require the introduction of sev-
eral variables. The angle D (figure 1) is defined as the angle between the

range vector from chaser to target and the positive X-axis and can be ex-
pressed as:

1 Yt ) Yc
D = tan (—X—F—X:)

where Y, X{, Y. and X are the geocentric coordinates of the target and
chaser,

When the target-chaser range has been reduced to 25 km, the angle D is
used as a reference for locking the onboard coordinate system. Let the angle
D; be set equal to D at the time the target-chaser range is 25 km. Then the
positive x axis is locked in position at an angle D; to the x-axis, The posi-
tive z~ axis is perpendicular to the x* axis and is in the orbital plane opposite
to the direction of motion. The elevation angle e (figure 1) is then defined as
the angle between the positive x! axis and the range vector from chaser to
target.

The variables of control used in the firing laws are the range between the
two vehicles R, the closing rate R, and the rate of change of elevation angle
e. In simulating the firing laws the smoothed values of R, R, and e are
. always used. The firing laws used in the simulation are designed to hold the
elevation angle close to zero by firing along the z! axis until the range and

range rate can be driven to zero by firing along the x -axis,

If the rate of change of elevation angle becomes greater in magnitude than
0.3 milliradian per second for 2 consecutive seconds, an acceleration of the
following direction and duration will be applied.

t_=0.9R e
¥ 9 _
a
Z
a = = a e
zZ Z0O,+
lel

’ 2
a = 0.5 m/sec (for coarse control)

2
= 0.1 m/sec (for vernier control)
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az, is the acceleration due to thrust level of zl rockets, If
|Ré| > 2.5 m/sec

the coarse guidance control is used. If |Re|<2.5 m/sec the vernier guidance
control is used. There is a mandatory coasting phase of 3 seconds between

all z1 -axis firings.

The x1 axis firings during coarse guidance control are designed todrive R
and R to zero between the two curves represented by the followinginequality:

: /K‘2 |R-R | <R = fK K | R-R|

=0.70 m/sec2

= 0.35 m/sec2

R1 = stand-off range (200 m)
Under conditions of negative acceleration, a, of -0.5 m/sec% the thrust is
applied for a time duration of:

_1.7(-+K]|R - R +|f{D

FT [ax |

If |R| <5 m/sec, a vernier guidance control is used in the x! axis firing.
If the chaser is in either quadrant one (R-R;>0 and R>0) or quadrant three
(R-R; <0 andR < O)the range is opening from the rendezvous point. The
f1r1ng time is computed as:

0.9 WK[IR - R;] +IRI)

F | %]

If the chaser is in quadrant two (R-R) <0 and R<0) or quadrant four
(R-R_ < 0 and R < 0)and if the closure is too rapid (i.e. , IR >.\/-EZ |IR-R|)
the firing time is computed as:

. - 1.75 ( - VK| R-Rj| +|RI)

¥ |%x |

If the chaser is in quadrant two or quadrant four and the closing rate is too
slow (i.e., | Rl< ‘/Kll R - R1|) the firing time is

_0.9(V/KiIR -Ry]| - IR|)
F |ax|

t




When the vernier guidance control is incorporated, the above equations
use the following constants:

K, =0.07 m/sec2
2
K, =0.14 m/sec
|a I =0,1 m/sec2
x

R, 1is substituted for R

R, =50 m (stand-off)

During both coarse and vernier firing control the firing duration must be
at least 2 seconds before the thrust is actuated. Also, a coasting time of at
least 3 seconds is set between x -axis firings.

The rendezvous maneuver is considered to be complete if:

R

50 +10 meters

IA

and|I.{| 0.5 m/sec.

1.4 Corrections to Chaser Orbit for Firing

During periods of firing, corrections must be made to the orbit of the
chaser vehicle. These corrections are made by superimposing the effects of
firing over a short time period (one second or less) on the position and vel-
ocity vectors of the chaser. The effects of firing must first be transformed
back into the selenocentric coordinate system and then added to the chaser
position and velocity vectors. This operation can be represented by the fol-
lowing matrix equation.

A (}- A\ . 2 A

Xe Vxel 1¥e Yxe -sin X\ - cos\ 1/2 a At a At

8 0 ) v - : . 1 2 A

Yo Vye| |Ye Vyc | [cos A - sin /2a, at” a At
where:

A A A A

Xes Yo, Vxes Vye = corrected position and velocity components of chaser
At = time interval over which correction is made




N N BN N BN N NENEENNERERNENNDNENDNLDN.

The corrected position and velocity vectors of the chaser are used to
calculate a new set of orbital elements by the method described in paragraph
1.7.2. The new orbital elements are used for subsequent positioning of the
chaser,

1.5 Noise Generation and Smoothing

The program has been planned to provide a specified order N, of least
squares smoothing for a specified number of points, M. The smoothed
values of Ry and R, are saved for the previous M time points. At each new
time point (intervals of one second are taken when program is in noise gen-
erating mode) the blocks of smooth ranges are updated by adding the new
values and dropping the values associated with the oldest time point.

It is desired to fit a function of the following form to the observed data.

2 N

ag tajt+azxt®+---+apt =R

If we express the observed data at each of the M points in an equation of
this form we obtain the matrix equation:

(1t t% th”'ao1 (R} ]
2 N
Lty t, ety a; |_|R,
S 2 N : .
a R
ul tM tM... tM Jb Na - NJ

or in the matrix form:

[r]-[4] < [®]

When the least squares technique is _applied to this system of equations,
a solution for the coefficient matrix [A] is obtained in the following form.

-1
ao([7 ) [T ]
The smoothed value of range can now be found at the next time point by

substituting the time of the next observation into the general equation.

R,=as+ajth + ag'cn2 ---+ antnN



where:
tn = time of the next observation
R, = smoothed value of range at time t,

Since the onboard computer system cannot instantaneously perform the
smoothing operation the smoothed values have been projected ahead to the
next time point so that they can be used as the control variables in the firing
laws while the present observations are being smoothed.

1.6 Corrections to Smoother Input for Firing

During periods when the control rockets of the chaser are firing, the ac-
celeration of the chaser due to the firing is much greater than the acceler-
ation due to orbital motion., This extra acceleration would normally tend to
cause the smoother output to lag behind the actual values. However, since
the firing laws allow the anticipation of firing from one time point to the next,
the smoother input can be corrected to offset the effects of the added accel-
eration.,

The smooth ranges can be adjusted by adding to each of the stored values
an increment equal to the effects of the added acceleration applied over a
time period from the projected time point to the time point associated with
each stored value. Thus, if the subscript 1 represented the oldest time point
and the subscript M represented the most recent time point then the adjust-
ment can be expressed as:

2 1 =i=M
R. =R. +(M-i+1/2)adt !
ic i
where:
RiC = adjusted value of smooth range
Ri = uncorrected value of smooth range
a = acceleration due to rockets being fired
At = sample interval

These corrections are made to each of the components of range.

Similar adjustments are made to the smoothed values of range rate, R,
and elevation rate, e. Using a similar notation as found in the case of
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range, the range rate adjustment can be expressed as:

R. =R, + aAt
1C 1

and the elevation rate adjustment can be expressed as

s =& +24t
ic = i R,
i
where:
R, = adjusted value of smooth range rate
ic
R. = uncorrected value of smooth range rate
i
é'c = adjusted value of smooth elevation rate
i
éi = uncorrected value of smooth elevation rate
a = acceleration due to rockets being fired
At = sample time interval

1.7 Transformations between Selenocentric Coordinates and Orbital

Elementsl—/
Under the following subheadings methods are discussed for transforming
selenocentric coordinates to orbital elements and vice versa. Symbols used
in the following subheadings are defined as follows:

N
N
N
1

selenocentric position components

N
N
I

= selenocentric velocity components

The following six parameters are referred to as the orbital elements.

)
I

the length of the semi-major axis

(]
"

the eccentricity of the ellipse

1
1/ Paragraphs 1.7.1, 1.7.2, and 1.7.3 of this subsection are extracted
from Ref 1.

Ref. .
© lDavenport, P. B., Coordinate Systems and Transformation for Earth

Satellite Prediction, Westinghouse Electric Corp., Report No.
AA-2547-61, December 1961.
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2 = right ascension of ascending node (the ascending node is the point
where the satellite crosses the Z . - Z2 plane, equator, from south
to north) 0 < Q<2 1

i = inclination of the plane of the orbit to the Z. - Z_ plane ( 0<i =m)

1 2

w = argument of the perigee, the angle from the ascending node to the
point of perigee ( 0= w< 2m)

To = epoch for the coordinate system and the time perigee occurred.

The following auxiliary parameters are also often used.

P = period of the orbit
n = mean angular motion of the satellite in the plane of the orbit
Tn = time of ascending node

1.7.1 Selenocentric Rectangular Coordinates from Orbital Elements

The selenocentric position, Z, and velocity Z, are obtained from the
elements a, e,Q, 1, w, and T, (figure 2) at time t by the following:

N = a-3/2
M=N(t-T)
o
the quantity M is known as the mean anomaly.
E=M+esinE
The equation above is Kepler's equation and must be solved for the eccentric

anomaly E (paragraph 1.7.3). Once E has been obtained, the sine and co-
sine of the true anomaly, u, (figure <)andthe length of radius vector r are

given by:
sinu_»\/l-e2 sin E
" l-ecosE
cosu—COSE-e
" 1-ecos E
r=a(l -e cos E)
F-12
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Let
Cl = cosQ cos (@ + u) - sinflcos i sin (w + u)
C2 = sin 2 cos (w + u) + cosRcos i sin (w + u)
C3 = sin i sin (w + u)

(these are the direction cosines of the satellite)

where
sin (w + u) = sin w cos u + cos w sinu
cos (w + u) = cos wcos u - sinw sin u
then
ZinCi (i=1, 2, 3)

The Z, are differentiated to yield the geocentric velocity components.
i

Zi = ,/Gme ‘\/; b. (i= 1, 2 3)3/

T i
where
. 2 . . .
bl=Cles1nE- 1 -e cosfsin(w+ u)+ sin Qcos i cos (w + u)
2
b, =C_esinE -4/1 - e sin{sin(w 4+ u) - cos Qcos icos (v + u)

2 2

3 C3e sinE+4\/1-e2 sin i cos (w + u)

Alternate expressions for the rates in terms of total velocity, V, but re-
quiring further calculation are given below:

V=————-"i ‘\/-ezcoszE

o
"

b.
S, = L
'\/1 - ezcosZ E

_2_/ In the system of units used for this program, the magnitude of the grav-
itational parameter, Gm 1is set equal to one. The dimensions have the

form of ¢(Len th)3
(Time)z

(i=1, 2, 3)
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Z;

Zy

N — POINT OF NODAL CROSSING
P — POINT OF PERIGEE

S — SATELLITE

w—NOP

K~ POS
{l—LONGITUDE OF ASCENDING NODE
i —INCLINATION

1589A-V8- 9

Figure 2. Orientation of the Orbital Plane

(the Si are direction cosines of the velocity vector)

Z, =VS, (i=1, 2, 3)
i i
In some instances the period, P,or mean motion, n, may be given as an
element instead of length of the semi-major axis, a. In either case, a, can
be obtained by one or both of the following relationships:

2T

n = ——

P
-2/3
n

a =

The element Tn (time of ascending node) is often given rather than Tg
(time of perigee).” In this case T, is obtained by the following relations:
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- S — SATELLITE
C— CENTER OF ELLIPSE

F — FOCI OF ELLIPSE
(CENTER OF GRAVITY)

E — ECCENTRIC ANOMALY

u— TRUE ANOMALY
I589A-VA-12

Figure 3. Eccentric Anomaly and Focal Polar Coordinates

. / 2
E =tan-1 (-51nw 1 -e)

e + cos w

) 2
in I -8in w 1 -e
sin w l+ecosw
e . E
T -7 . (@-esin w)
o n \ n

If E , is in the third or fourth quadrant then it should be changed to a
negative angle to make the time between T, and T, a minimum.



1.7.2 Orbital Elements from Selenocentric Rectangular Coordinates

_1 . . . .
= Z_ Z -2 _ 17 -
Q = tan [( 2257 2,2,)/2 2, Z3Z1)]
-1
i = tan [Z3/(ZZ cos Q-Z1 sin Q)]
€= W +u=ta.n-1 [Z?’/sini(Z1 cos Q+Z2 sin §2 )]
rr =ZIZI+ZZZZ 2323
1‘2=Z + Z +ZZ
3
2 . 2 * 2
v —Zl+Z +Z3
1
a z —
2/r - V2
. 2
e =1/a,\/;(rr)2+(a-r)
If e=0then w =0and M =E =u = ¢
otherwise:
-1 .
E =tan [ Jarr/(a - r)]
-1 2
u = tan [ 1 -e smE/(cosE-e)]
M =E-esinE
w = €-1u
In either case T is found by the fomulas:
-3/2
n =a
M
o =t-%

Additional Relations

p

F-16
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a{(l - e) (known as orbit parameter)

P

14+ ecosu




[----------

. _ﬁ.esinE _ aensinE
- r " 1-ecos E
. oo i (1 - B3
sinu =
e

cosu = X

er

l+e l «cosu
ta 2= ——r 2) sf——————
nfu/2) 1l -e tan (E/2) l + cosu

u = ta.n-l [o\/l - e2 sin E/(cos E - e)]

o _Ja«/l-ez_n‘\/l-e‘2
- rZ _(l—ecosE)Z.
/ 2 .
sin E = 1l -e sinu _rr
l1+ecosu ,\/ée
e + cosu a-r
cos E = =
l1+ecosu ae
. 1 n
E = =
rﬁ l-ecos E
dr _resinE
du 2
1 -e
22
Vv =a/r u +i‘2 :»\/Z/r-l/a
ZlZZ-ZZZI = Jfa l—eZ cos i
Z,2,-2,2Z, = /3 1 - e sin Q sin i
2,2,-2,2 = Jas/1 -E®cos g sini
e =,/ 2P
a



1.7.3 Solution of Kepler's Equation

E =M+ e sin E
Let
EO=M+esinM (1 + e cos M)
M-E +esinE
o o
AE =

1l ~ecos E
o

E =E + AE
1 o

If E] and E_ agree to the accuracy wanted then E, is the desired approxima-

tion to E. If they do not agree, then replace E, by Ej and compute a new Ej.

If the calculations are being done by hand, the above process becomes
more laborious as e approaches 1. In this case a better value of E can be
obtained by plotting the two curves:

y =sin E
and
y =1/e (E - M)

as a function of E. The abscissa of their point of intersection is the value of
E satisfying the equation.

Another iteration which is simpler than the one above, but requiring

more iterations for the same accuracy is: Ei+1 = M+ e sin Ei'

2. INPUTS FOR ANALYSIS OF LUNAR ASCENT TO RENDEZVOUS

The inputs used for the analysis in paragraph 5.3.2.1 of Volume IIl are
obtained from an analysis of lunar rendezvous which is not part of this re-
port but is essentially similar to the lunar rendezvous analysis of Section
6.0 of Volume III except for the guidance and control scheme used. The
guidance and control method is not considered representative of typical ren-
dezvous procedure primarily because of excessive fuel requirements. For
this reason, the analysis is not included.

The results of the analysis pertaining to injection sensors are listed in
table 1 below to serve as a reference for paragraph 5.3.2.1 of Volume III.
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INJECTION SENSOR REQUIREMENTS

TABLE 1

Required Sensor

State of the Art

Symbol Quantity Accuracy (30 ) Accuracy (30 )
or altitude 1.4 km(4.7% of R) 30 m (0.1% of R)*
&v velocity 1.5 m/sec 0.3 m/sec
oy pitch attitude 2.0 deg 0.3 deg
Sy yaw attitude 22.2 deg 0.3 deg
o0 central angle 0.28 deg --
6R range 2.0% of R 0.1% of R
6t timing 40.6 sec 3 sec
6i inclination 0.8 deg 0.1 deg
F-19/F-20




